
suanlab

Information Retrieval

Suan Lee

- Information Retrieval - 07 Computing scores in a complete search system 1

suanlab

Recap: tf-idf weighting

 The tf-idf weight of a term is the product of its tf weight and its idf weight.

 Best known weighting scheme in information retrieval

 Increases with the number of occurrences within a document

 Increases with the rarity of the term in the collection

- Information Retrieval - 07 Computing scores in a complete search system 2

)df/(log)tflog1(w 10,10, tdt N
dt



suanlab

Recap: Queries as vectors

Key idea 1: Do the same for queries: represent them as vectors
in the space

Key idea 2: Rank documents according to their proximity to the
query in this space

proximity = similarity of vectors

- Information Retrieval - 07 Computing scores in a complete search system 3

suanlab

Recap: cosine(query,document)

- Information Retrieval - 07 Computing scores in a complete search system 4











V

i i

V

i i

V

i ii

dq

dq

d

d

q

q

dq

dq
dq

1

2

1

2

1),cos(











Dot product Unit vectors

cos(q,d) is the cosine similarity of q and d … or,
equivalently, the cosine of the angle between q and d.

suanlab

This lecture

Speeding up vector space ranking

Putting together a complete search system

Will require learning about a number of miscellaneous to
pics and heuristics

- Information Retrieval - 07 Computing scores in a complete search system 5

suanlab

Computing cosine scores

- Information Retrieval - 07 Computing scores in a complete search system 6

suanlab

Efficient cosine ranking

Find the K docs in the collection “nearest” to the query  K largest q
uery-doc cosines.

Efficient ranking:

 Computing a single cosine efficiently.

 Choosing the K largest cosine values efficiently.
 Can we do this without computing all N cosines?

- Information Retrieval - 07 Computing scores in a complete search system 7

suanlab

Efficient cosine ranking

What we’re doing in effect: solving the K-nearest neighbor probl
em for a query vector

 In general, we do not know how to do this efficiently for high-di
mensional spaces

But it is solvable for short queries, and standard indexes suppor
t this well

- Information Retrieval - 07 Computing scores in a complete search system 8

suanlab

Special case – unweighted queries

No weighting on query terms
 Assume each query term occurs only once

Then for ranking, don’t need to normalize query vector
 Slight simplification of algorithm from Lecture 6

- Information Retrieval - 07 Computing scores in a complete search system 9

suanlab

Computing the K largest cosines: selection vs. sorting

Typically we want to retrieve the top K docs (in the cosine ranki
ng for the query)
 not to totally order all docs in the collection

Can we pick off docs with K highest cosines?

Let J = number of docs with nonzero cosines
 We seek the K best of these J

- Information Retrieval - 07 Computing scores in a complete search system 10

suanlab

Use heap for selecting top K

Binary tree in which each node’s value > the values of children

Takes 2J operations to construct, then each of K “winners” read
off in 2log J steps.

For J=1M, K=100, this is about 10% of the cost of sorting.

- Information Retrieval - 07 Computing scores in a complete search system 11

1

.9 .3

.8.3

.1

.1

suanlab

Bottlenecks

Primary computational bottleneck in scoring: cosine computati
on

Can we avoid all this computation?

Yes, but may sometimes get it wrong
 a doc not in the top K may creep into the list of K output docs

 Is this such a bad thing?

- Information Retrieval - 07 Computing scores in a complete search system 12

suanlab

Cosine similarity is only a proxy

User has a task and a query formulation

Cosine matches docs to query

Thus cosine is anyway a proxy for user happiness

 If we get a list of K docs “close” to the top K by cosine measure,
should be ok

- Information Retrieval - 07 Computing scores in a complete search system 13

suanlab

Generic approach

Find a set A of contenders, with K < |A| << N
 A does not necessarily contain the top K, but has many docs from among the

top K

 Return the top K docs in A

Think of A as pruning non-contenders

The same approach is also used for other (non-cosine) scoring
functions

Will look at several schemes following this approach

- Information Retrieval - 07 Computing scores in a complete search system 14

suanlab

Index elimination

Basic algorithm cosine computation algorithm only considers
docs containing at least one query term

Take this further:
 Only consider high-idf query terms

 Only consider docs containing many query terms

- Information Retrieval - 07 Computing scores in a complete search system 15

suanlab

High-idf query terms only

For a query such as catcher in the rye

Only accumulate scores from catcher and rye

 Intuition: in and the contribute little to the scores and so don’t
alter rank-ordering much

Benefit:
 Postings of low-idf terms have many docs  these (many) docs get

eliminated from set A of contenders

- Information Retrieval - 07 Computing scores in a complete search system 16

suanlab

Docs containing many query terms

Any doc with at least one query term is a candidate for the top K
output list

For multi-term queries, only compute scores for docs containing
several of the query terms
 Say, at least 3 out of 4

 Imposes a “soft conjunction” on queries seen on web search engines
(early Google)

Easy to implement in postings traversal

- Information Retrieval - 07 Computing scores in a complete search system 17

suanlab

3 of 4 query terms

- Information Retrieval - 07 Computing scores in a complete search system 18

Brutus

Caesar

Calpurnia

Antony

Scores only computed for docs 8, 16 and 32.

3 4 8 16 32 64 128

2 4 8 16 32 64 128

1 2 3 5 8 13 21 34

13 16 32

suanlab

Champion lists

Precompute for each dictionary term t, the r docs of highest
weight in t’s postings
 Call this the champion list for t

 (aka fancy list or top docs for t)

Note that r has to be chosen at index build time
 Thus, it’s possible that r < K

At query time, only compute scores for docs in the champion list
of some query term
 Pick the K top-scoring docs from amongst these

- Information Retrieval - 07 Computing scores in a complete search system 19

suanlab

Exercises

How do Champion Lists relate to Index Elimination? Can they be
used together?

How can Champion Lists be implemented in an inverted index?
 Note that the champion list has nothing to do with small docIDs

- Information Retrieval - 07 Computing scores in a complete search system 20

suanlab

Static quality scores

We want top-ranking documents to be both relevant and
authoritative

Relevance is being modeled by cosine scores

Authority is typically a query-independent property of a document

Examples of authority signals
 Wikipedia among websites

 Articles in certain newspapers

 A paper with many citations

 Many bitly’s, diggs or del.icio.us marks

 (Pagerank)

- Information Retrieval - 07 Computing scores in a complete search system 21

Quantitative

suanlab

Modeling authority

Assign to each document a query-independent quality score in
[0,1] to each document d
 Denote this by g(d)

Thus, a quantity like the number of citations is scaled into [0,1]
 Exercise: suggest a formula for this.

- Information Retrieval - 07 Computing scores in a complete search system 22

suanlab

Net score

Consider a simple total score combining cosine relevance and
authority

net-score(q,d) = g(d) + cosine(q,d)
 Can use some other linear combination

 Indeed, any function of the two “signals” of user happiness – more
later

Now we seek the top K docs by net score

- Information Retrieval - 07 Computing scores in a complete search system 23

suanlab

Top K by net score – fast methods

First idea: Order all postings by g(d)

Key: this is a common ordering for all postings

Thus, can concurrently traverse query terms’ postings for
 Postings intersection

 Cosine score computation

Exercise: write pseudocode for cosine score computation if
postings are ordered by g(d)

- Information Retrieval - 07 Computing scores in a complete search system 24

suanlab

Why order postings by g(d)?

Under g(d)-ordering, top-scoring docs likely to appear early in
postings traversal

 In time-bound applications (say, we have to return whatever
search results we can in 50 ms), this allows us to stop postings
traversal early
 Short of computing scores for all docs in postings

- Information Retrieval - 07 Computing scores in a complete search system 25

suanlab

Champion lists in g(d)-ordering

Can combine champion lists with g(d)-ordering

Maintain for each term a champion list of the r docs with
highest g(d) + tf-idftd

Seek top-K results from only the docs in these champion lists

- Information Retrieval - 07 Computing scores in a complete search system 26

suanlab

High and low lists

For each term, we maintain two postings lists called high and
low
 Think of high as the champion list

When traversing postings on a query, only traverse high lists
first
 If we get more than K docs, select the top K and stop

 Else proceed to get docs from the low lists

Can be used even for simple cosine scores, without global
quality g(d)

A means for segmenting index into two tiers

- Information Retrieval - 07 Computing scores in a complete search system 27

suanlab

Impact-ordered postings

We only want to compute scores for docs for which wft,d is high e
nough

We sort each postings list by wft,d

Now: not all postings in a common order!

How do we compute scores in order to pick off top K?
 Two ideas follow

- Information Retrieval - 07 Computing scores in a complete search system 28

suanlab

1. Early termination

When traversing t’s postings, stop early after either
 a fixed number of r docs

 wft,d drops below some threshold

Take the union of the resulting sets of docs
 One from the postings of each query term

Compute only the scores for docs in this union

- Information Retrieval - 07 Computing scores in a complete search system 29

suanlab

2. idf-ordered terms

When considering the postings of query terms

Look at them in order of decreasing idf
 High idf terms likely to contribute most to score

As we update score contribution from each query term
 Stop if doc scores relatively unchanged

Can apply to cosine or some other net scores

- Information Retrieval - 07 Computing scores in a complete search system 30

suanlab

Cluster pruning: preprocessing

Pick N docs at random: call these leaders

For every other doc, pre-compute nearest leader

Docs attached to a leader: its followers;

Likely: each leader has ~ N followers.

Process a query as follows:

Given query Q, find its nearest leader L.

Seek K nearest docs from among L’s followers.

- Information Retrieval - 07 Computing scores in a complete search system 31

suanlab

Visualization

- Information Retrieval - 07 Computing scores in a complete search system 32

Query

Leader Follower

suanlab

Why use random sampling

Fast

Leaders reflect data distribution

- Information Retrieval - 07 Computing scores in a complete search system 33

suanlab

General variants

Have each follower attached to b1=3 (say) nearest leaders.

From query, find b2=4 (say) nearest leaders and their followers.

Can recurse on leader/follower construction.

- Information Retrieval - 07 Computing scores in a complete search system 34

suanlab

Exercises

To find the nearest leader in step 1, how many cosine computati
ons do we do?
 Why did we have N in the first place?

What is the effect of the constants b1, b2 on the previous slide?

Devise an example where this is likely to fail – i.e., we miss one o
f the K nearest docs.
 Likely under random sampling.

- Information Retrieval - 07 Computing scores in a complete search system 35

suanlab

Parametric and zone indexes

Thus far, a doc has been a sequence of terms

 In fact documents have multiple parts, some with special
semantics:
 Author

 Title

 Date of publication

 Language

 Format

 etc.

These constitute the metadata about a document

- Information Retrieval - 07 Computing scores in a complete search system 36

suanlab

Fields

We sometimes wish to search by these metadata
 E.g., find docs authored by William Shakespeare in the year 1601,

containing alas poor Yorick

Year = 1601 is an example of a field

Also, author last name = shakespeare, etc.

Field or parametric index: postings for each field value
 Sometimes build range trees (e.g., for dates)

Field query typically treated as conjunction
 (doc must be authored by shakespeare)

- Information Retrieval - 07 Computing scores in a complete search system 37

suanlab

Zone

A zone is a region of the doc that can contain an arbitrary
amount of text, e.g.,
 Title

 Abstract

 References …

Build inverted indexes on zones as well to permit querying

E.g., “find docs with merchant in the title zone and matching the
query gentle rain”

- Information Retrieval - 07 Computing scores in a complete search system 38

suanlab

Example zone indexes

- Information Retrieval - 07 Computing scores in a complete search system 39

Encode zones in dictionary vs. postings.

suanlab

Tiered indexes

Break postings up into a hierarchy of lists
 Most important

 …

 Least important

Can be done by g(d) or another measure

 Inverted index thus broken up into tiers of decreasing
importance

At query time use top tier unless it fails to yield K docs
 If so drop to lower tiers

- Information Retrieval - 07 Computing scores in a complete search system 40

suanlab

Example tiered index

- Information Retrieval - 07 Computing scores in a complete search system 41

suanlab

Query term proximity

Free text queries: just a set of terms typed into the query box –
common on the web

Users prefer docs in which query terms occur within close
proximity of each other

Let w be the smallest window in a doc containing all query
terms, e.g.,

For the query strained mercy the smallest window in the doc
The quality of mercy is not strained is 4 (words)

Would like scoring function to take this into account – how?

- Information Retrieval - 07 Computing scores in a complete search system 42

suanlab

Query parsers

Free text query from user may in fact spawn one or more
queries to the indexes, e.g., query rising interest rates
 Run the query as a phrase query

 If <K docs contain the phrase rising interest rates, run the two phrase
queries rising interest and interest rates

 If we still have <K docs, run the vector space query rising interest rates

 Rank matching docs by vector space scoring

This sequence is issued by a query parser

- Information Retrieval - 07 Computing scores in a complete search system 43

suanlab

Aggregate scores

We’ve seen that score functions can combine cosine, static
quality, proximity, etc.

How do we know the best combination?

Some applications – expert-tuned

 Increasingly common: machine-learned

- Information Retrieval - 07 Computing scores in a complete search system 44

suanlab

Putting it all together

- Information Retrieval - 07 Computing scores in a complete search system 45

suanlab

Resources

 IIR 7, 6.1

- Information Retrieval - 07 Computing scores in a complete search system 46

