MULTI
FREQUENCY PAT]—ERSOI\:NVERTED

ONE QUERIES CON FUSlNG PROGRESSED WEIGHTING

yome W) AT AMATHEMATICAL
ENGINES MICROSOFT
SORT_pyihie REUTERS KNOWING DQC UMENTSDIFFICULT:sess

G AGGREGATE

DIGGIN STATISTICS INTRACTABLE
STUDIED INTERESTING
GROWING DISCOVERING COSINE ENTHRALLING MAGICAL
¢ TECHNOLOGICAL SPECIAL COQ_RELATIONAL AMAZ|NG BRIGHT
NEEDED
UNSTRUCTURED HOW

soriMPORTANT R AN KK INDEX e orexT 1AD00P
ap FAST
LIST FUN
SCORES

MODIFY PARSING
“iver] ARGE compLex s FOR, WERB
INFORMAT ION% -

e SCIENCE RETRIEVE METADATA VASTLE SEARCHING

IACE GV DOCUM G OO GLESH

TR e s meinie R B TR | E VA [DATABASE

WIKIPEDIA RETR
wiiUSEF U | RSiRieuTe
THROUGH

POSTING pri pyaNT GATH ER HNEAR

HAPPY OLITE

suanlab - information Retrieval - 06 Scoring, Term Weighting and the Vector Space Model 1

Recap of lecture 5

» Collection and vocabulary statistics: Heaps' and Zipf’s laws
* Dictionary compression for Boolean indexes
» Dictionary string, blocks, front coding

* Postings compression: Gap encoding, prefix-unique codes

" Variable-Byte and Gamma codes

collection (text, xml markup etc) 3,600.0 MB
collection (text) 960.0 MB
Term-doc incidence matrix 40,000.0 MB
postings, uncompressed (32-bit words) 400.0 MB
postings, uncompressed (20 bits) 250.0 MB
postings, variable byte encoded 116.0 MB
postings, g-encoded 101.0 MB

suan - Information Retrieval - 06 Scoring, Term Weighting and the Vector Space Model

This lecture; IIR Sections 6.2-6.4.3

» Ranked retrieval

" Scoring documents
* Term frequency

" Collection statistics
" Weighting schemes

= Vector space scoring

suan - Information Retrieval - 06 Scoring, Term Weighting and the Vector Space Model

Scoring, Term Weighting and the
Vector Space Model

Ranked retrieval

* Thus far, our queries have all been Boolean.
* Documents either match or don't.

= Also good for applications: Applications can easily consume 1000s of
results.

" Not good for the majority of users.

* Most users incapable of writing Boolean queries (or they are, but they think
it’s too much work).

suan - Information Retrieval - 06 Scoring, Term Weighting and the Vector Space Model

Problem with Boolean search: feast or famine

» Boolean queries often result in either too few (=0) or too many
(1000s) results.

" Query 1: “standard user dlink 650" — 200,000 hits
" Query 2: “standard user dlink 650 no card found”: 0 hits

= [t takes a lot of skill to come up with a query that produces a
manageable number of hits.

= AND gives too few; OR gives too many

suan - Information Retrieval - 06 Scoring, Term Weighting and the Vector Space Model

Ranked retrieval models

= Rather than a set of documents satisfying a query expression, in
, the system returns an ordering over the (top)
documents in the collection for a query

: Rather than a query language of operators
and expressions, the user’s query is just one or more words in a
human language

" [n principle, there are two separate choices here, but in practice,
ranked retrieval has normally been associated with free text
queries and vice versa

suan - Information Retrieval - 06 Scoring, Term Weighting and the Vector Space Model

Feast or famine: not a problem in ranked retrieval

* When a system produces a ranked result set, large result sets
are not an issue
» [ndeed, the size of the result set is not an issue
» We just show the top k (® 10) results
» We don’t overwhelm the user

* Premise: the ranking algorithm works

suan - Information Retrieval - 06 Scoring, Term Weighting and the Vector Space Model

Scoring as the basis of ranked retrieval

» We wish to return in order the documents most likely to be
useful to the searcher

» How can we rank-order the documents in the collection with
respect to a query?

" Assign a score - say in [0, 1] - to each document

» This score measures how well document and query “match”.

suan - Information Retrieval - 06 Scoring, Term Weighting and the Vector Space Model

Query-document matching scores

*» We need a way of assigning a score to a query/document pair
" Let’s start with a one-term query

= [f the query term does not occur in the document: score should
be 0

" The more frequent the query term in the document, the higher
the score (should be)

= We will look at a number of alternatives for this.

suan - Information Retrieval - 06 Scoring, Term Weighting and the Vector Space Model 10

Take 1: Jaccard coefficient

= Recall from Lecture 3: A commonly used measure of overlap of
two sets A and B

"jaccard(A,B)=|AnB|/|A U B|
"jaccard(4,4) =1
"jaccard(A,B)=0ifANnB=0

* 4 and B don’t have to be the same size.

» Always assigns a number between 0 and 1.

suan - Information Retrieval - 06 Scoring, Term Weighting and the Vector Space Model 11

Jaccard coefficient: Scoring example

» What is the query-document match score that the Jaccard
coefficient computes for each of the two documents below?

" Query: ides of march

" Document 1: caesar died in march

" Document 2: the long march

suan - Information Retrieval - 06 Scoring, Term Weighting and the Vector Space Model

Issues with Jaccard for scoring

" [t doesn’t consider (how many times a term
occurs in a document)

" Rare terms in a collection are more informative than frequent
terms. Jaccard doesn’t consider this information

* We need a more sophisticated way of normalizing for length

= Later in this lecture, we’ll use |4 N Bl/\/lA U B
= ..instead of |A N B|/|A U B| (Jaccard) for length normalization.

suan - Information Retrieval - 06 Scoring, Term Weighting and the Vector Space Model

Recall (Lecture 1): Binary term-document incidence
matrix

Antony and Cleopatra Julius Caesar The Tempest Hamlet Othello Macbeth

Antony 1 1 0 0 0 1
Brutus 1 1 0 1 0 0
Caesar 1 1 0 1 1 1
Calpurnia 0 1 0 0 0 0
Cleopatra 1 0 0 0 0 0
mercy 1 0 1 1 1 1
worser 1 0 1 1 1 0

Each document is represented by a binary vector € {0,1}V

suan - Information Retrieval - 06 Scoring, Term Weighting and the Vector Space Model

Term-document count matrices

= Consider the number of occurrences of a term in a document:
= Each document is a count vector in NY: a column below

Antony and Cleopatra | Julius Caesar | The Tempest Hamlet Othello Macbeth
Antony 157 73 0 0 0 0
Brutus 4 157 0 1 0 0
Caesar 232 227 0 2 1 1
Calpurnia 0 10 0 0 0 0
Cleopatra 57 0 0 0 0 0
mercy 2 0 3 5 5 1
worser 2 0 1 1 1 0

suan - Information Retrieval - 06 Scoring, Term Weighting and the Vector Space Model

Bag of words model

= Vector representation doesn’t consider the ordering of words in a
document

and have the
same vectors

* This is called the bag of words model.

" In a sense, this is a step back: The positional index was able to
distinguish these two documents.

= We will look at “recovering” positional information later in this
course.

" For now: bag of words model

suan - Information Retrieval - 06 Scoring, Term Weighting and the Vector Space Model 16

Term frequency tf

=" The term frequency tf, ; of term ¢ in document d is defined as
the number of times that ¢ occurs in d.

» We want to use tf when computing query-document match
scores. But how?

» Raw term frequency is not what we want:

* A document with 10 occurrences of the term is more relevant than a
document with 1 occurrence of the term.

* But not 10 times more relevant. NB: frequency = count in IR

" Relevance does not increase proportionally with term frequency.

suan - Information Retrieval - 06 Scoring, Term Weighting and the Vector Space Model 17

Log-frequency weighting

" The log frequency weight of term tin d is

W — 1+log,, tf,,, 1 tf, >0
td 0, otherwise

")0->0,1-1,2—-1.3,10—- 22,1000 — 4, etc.

= Score for a document-query pair: sum over terms ¢ in both g and d:

" score = Zeqmd (1+log tf, ;)

* The score is 0 if none of the query terms is present in the document.

suan - Information Retrieval - 06 Scoring, Term Weighting and the Vector Space Model

Document frequency

» Rare terms are more informative than frequent terms
» Recall stop words

" Consider a term in the query that is rare in the collection (e.g.,
arachnocentric)

" A document containing this term is very likely to be relevant to
the query arachnocentric

» —» We want a high weight for rare terms like arachnocentric.

suan - Information Retrieval - 06 Scoring, Term Weighting and the Vector Space Model 19

Document frequency, continued

* Frequent terms are less informative than rare terms

» Consider a query term that is frequent in the collection (e.g., high,
increase, line)

* A document containing such a term is more likely to be relevant
than a document that doesn'’t

" But it's not a sure indicator of relevance.

" - For frequent terms, we want high positive weights for words like
high, increase, and line

» But lower weights than for rare terms.
= We will use document frequency (df) to capture this.

suan - Information Retrieval - 06 Scoring, Term Weighting and the Vector Space Model

idf weight

= df, is the document frequency of ¢: the number of documents
that contain ¢

= df, is an inverse measure of the informativeness of ¢
= df, <N

» We define the idf (inverse document frequency) of ¢t by

iaf . =log,, (N/df,)

* We use log (N/df,) instead of N/df, to “dampen” the effect of idf.

Will turn out the base of the log is immaterial.

suan - Information Retrieval - 06 Scoring, Term Weighting and the Vector Space Model

idf example, suppose N = 1 million

term df, idf,
calpurnia 1
animal 100
sunday 1,000
fly 10,000
under 100,000
the 1,000,000

idf . = log,, (N/df,)

There is one idf value for each term tin a collection.

suan - Information Retrieval - 06 Scoring, Term Weighting and the Vector Space Model

Effect of idf on ranking

" Does idf have an effect on ranking for one-term queries, like
" iPhone

" idf has no effect on ranking one term queries

= idf affects the ranking of documents for queries with at least two
terms

* For the query , idf weighting makes occurrences of
count for much more in the final document ranking than
occurrences of

suan - Information Retrieval - 06 Scoring, Term Weighting and the Vector Space Model

Collection vs. Document frequency

» The collection frequency of t is the number of occurrences of ¢
in the collection, counting multiple occurrences.

= Example:
Word Collection frequency Document frequency
insurance 10440 3997
try 10422 8760

*» Which word is a better search term (and should get a higher
weight)?

suan - Information Retrieval - 06 Scoring, Term Weighting and the Vector Space Model

tf-idf weighting

* The tf-idf weight of a term is the product of its tf weight and its
idf weight.

W =log(1+tf, ;) xlog.,(N /df,)

»" Best known weighting scheme in information retrieval
* Note: the “-” in tf-idf is a hyphen, not a minus sign!
= Alternative names: tf.idf, tf x idf

® [ncreases with the number of occurrences within a document
" [ncreases with the rarity of the term in the collection

suan - Information Retrieval - 06 Scoring, Term Weighting and the Vector Space Model

25

Score for a document given a query

Score(q,d) = Z

" There are many variants
* How “tf” is computed (with/without logs)

tfidf

tegnNd

» Whether the terms in the query are also weighted

suan - Information Retrieval - 06 Scoring, Term Weighting and the Vector Space Model

Binary — count —» weight matrix

Antony
Brutus
Caesar
Calpurnia
Cleopatra
mercy

waorser

Antony and Cleopatra
5.25
1.21
8.59
0
2.85
1.51
1.37

Julius Caesar

3.18
6.1
2.54
1.54
0
0
0

The Tempest
0

o O O O

1.9
0.11

Hamlet

Othello

Macbeth
0.35

Each document is now represented by a real-valued
vector of tf-idf weights € RV

suan - Information Retrieval - 06 Scoring, Term Weighting and the Vector Space Model

27

Documents as vectors

» So we have a |V|-dimensional vector space
» Terms are axes of the space
» Documents are points or vectors in this space

" Very high-dimensional: tens of millions of dimensions when you
apply this to a web search engine

= These are very sparse vectors - most entries are zero.

suan - Information Retrieval - 06 Scoring, Term Weighting and the Vector Space Model

28

Queries as vectors

= Key idea 1: Do the same for queries: represent them as vectors in
the space

= Key idea 2: Rank documents according to their proximity to the
query in this space

" proximity = similarity of vectors
" proximity = inverse of distance

= Recall: We do this because we want to get away from the you're-
either-in-or-out Boolean model.

" Instead: rank more relevant documents higher than less relevant
documents

suan - Information Retrieval - 06 Scoring, Term Weighting and the Vector Space Model 29

Formalizing vector space proximity

= First cut: distance between two points
= (= distance between the end points of the two vectors)

= Fuclidean distance?
= Fuclidean distance is a bad idea ...

= .. because Euclidean distance is for vectors of

suan - Information Retrieval - 06 Scoring, Term Weighting and the Vector Space Model

Why distance is a bad idea

» The Euclidean distance GOSSIP d>
between g

"and d, is large even though
the

= distribution of terms in the

query g and the distribution
of

" terms in the document d, are 0

d3
= JEALOUS

" very similar.

suan - Information Retrieval - 06 Scoring, Term Weighting and the Vector Space Model 31

Use angle instead of distance

" Thought experiment: take a document d and append it to itself.
Call this document d'.

= “Semantically” d and d’ have the same content

» The Euclidean distance between the two documents can be
quite large

" The angle between the two documents is 0, corresponding to
maximal similarity.

» Key idea: Rank documents according to angle with query.

suan - Information Retrieval - 06 Scoring, Term Weighting and the Vector Space Model 32

From angles to cosines

* The following two notions are equivalent.

» Rank documents in decreasing order of the angle between query and
document

» Rank documents in increasing order of cosine(query, document)

" Cosine is a monotonically decreasing function for the interval
[0°, 180°]

suan - Information Retrieval - 06 Scoring, Term Weighting and the Vector Space Model

From angles to cosines

=11 P 150 200 250 a0 350

" But how - — should we be computing cosines?

suan

- Information Retrieval - 06 Scoring, Term Weighting and the Vector Space Model

34

Length normalization

* A vector can be (length-) normalized by dividing each of its
components by its length - for this we use the L, norm:

Xl, = >

" Dividing a vector by its L, norm makes it a unit (length) vector
(on surface of unit hypersphere)

= Effect on the two documents d and d’ (d appended to itself)
from earlier slide: they have identical vectors after length-
normalization.

* Long and short documents now have comparable weights

suan - Information Retrieval - 06 Scoring, Term Weighting and the Vector Space Model

35

cosine(query, document)

suan

Dot product Unit vectors
J
- - v
. ol d.
cos(a.d) = - q : VZI — V|
\q\ a3 e 3

q; is the tf-idf weight of term iin the query
d: is the tf-idf weight of term i in the document

cos(g,d) is the cosine similarity of gand d ... or,

equivalently, the cosine of the angle between g and d.

- Information Retrieval - 06 Scoring, Term Weighting and the Vector Space Model

36

Cosine for length-normalized vectors

" For length-normalized vectors, cosine similarity is simply the
dot product (or scalar product):

= 14

cos(@,d)=ged=), qd,

for g, d length-normalized.

suan - Information Retrieval - 06 Scoring, Term Weighting and the Vector Space Model

Cosine similarity illustrated

suan

POOR
11 v(di)
[
< V(do)

v(ds)

- Information Retrieval - 06 Scoring, Term Weighting and the Vector Space Model

RICH

38

Cosine similarity amongst 3 documents

» How similar are the novels term >a> il WH
o affection 115 58 20
= SaS: Sense and Sensibility ,
jealous 10 7 11
= WH: Wuthering Heights? wuthering 0 0 38
5 s s) Term frequencies (counts)
suan - Information Retrieval - 06 Scoring, Term Weighting and the Vector Space Model

39

3 documents example contd.

" Log frequency weighting = After length normalization
term SaS PaP WH term SaS PaP WH
affection 3.06 2.76 2.30 affection 0.789 0.832 0.524
jealous 2.00 1.85 2.04 jealous 0.515 0.555 0.465
gossip 1.30 0 1.78 gossip 0.335 0 0.405
wuthering 0 0 2.58 wuthering 0 0 0.588

cos(SaS,PaP) = 0.789x%x0.832+0.515x0.555+0.335%x0.0+0.0x0.0 = 0.94
cos(SaS,WH) =~ 0.79
cos(PaP,WH) = 0.69

suan - Information Retrieval - 06 Scoring, Term Weighting and the Vector Space Model

Computing cosine scores

COSINESCORE(q)

1

O O 00 N O O = Wk

l—l

float Scores[N] =0

float Length[N]

for each query term t

do calculate w¢ 4 and fetch postings list for ¢
for each pair(d,tf;) in postings list
do Scores[d|+ = W¢ g X Wt g

Read the array Length

for each d

do Scores|d] = Scores|[d]/Length|d]

return Top K components of Scores||

suan - Information Retrieval - 06 Scoring, Term Weighting and the Vector Space Model

41

tf-idf weighting has many variants

Term frequency

Document frequency

MNormalization

n (natural)

| (logarithm)

b (boolean)

L (log ave)

tfrd
1 —+ |Gg[tfrﬂ'}

0.5xtf, 4

a (augmented) 0.5+ T)

{1 if tfrg >0

0 otherwise

1+log(tfs 4)

1+log(ave sz q4(tfs g))

n (no) 1

t (idf)

p (prob idf) max{0,log

N
log gt

N

—df;
ﬁiff

j

n (none)

c (cosine)

1

1

VW W v

u (pivoted 1/u
unique)

b (byte size)

a <1

1/CharlLength”,

Columns headed ‘n’ are acronyms for weight schemes.

Why is the base of the log in idf immaterial?

suan

- Information Retrieval - 06 Scoring, Term Weighting and the Vector Space Model

42

Weighting may differ in queries vs documents

* Many search engines allow for different weightings for queries vs.
documents

» SMART Notation: denotes the combination in use in an engine, with
the notation ddd.qqq, using the acronyms from the previous table

* A very standard weighting scheme is: Inc.ltc

" Document: logarithmic tf (I as first character), no idf and cosine

normalization 4%
A bad idea?

" Query: logarithmic tf (1 in leftmost column), idf (t in second column),
cosine normalization ...

suan - Information Retrieval - 06 Scoring, Term Weighting and the Vector Space Model 43

tf-idf example: Inc.ltc

suan

Document: car insurance auto insurance
Query: best car insurance

Term Query Document Prod
tf-raw | tf-wt df idf | wt | n'lize | tf-raw | tf-wt | wt | n'lize

auto 0 0| 5000 23| O 0 1 1 1] 0.52 0

best 1 11 50000 13| 13| 0.34 0 0| O 0 0

car 1 11 10000| 20| 20| 0.52 1 1 0.52| 0.27

Insurance 1 11 1000 3.0| 3.0 0.78 2 1.3 13| 068| 0.53

Exercise: what is N, the number of docs?

Doc length =12+ 0>+ 1> +1.3> ~1.92

Score = 0+0+0.27+0.53 =0.8

- Information Retrieval - 06 Scoring, Term Weighting and the Vector Space Model

44

Summary - vector space ranking

" Represent the query as a weighted tf-idf vector
= Represent each document as a weighted tf-idf vector

* Compute the cosine similarity score for the query vector and
each document vector

» Rank documents with respect to the query by score
" Return the top K (e.g., K = 10) to the user

suan - Information Retrieval - 06 Scoring, Term Weighting and the Vector Space Model

45

Resources for today’s lecture

"[IR6.2-6.4.3

" http://www.miislita.com /information-retrieval-
tutorial/cosine-similarity-tutorial.html

* Term weighting and cosine similarity tutorial for SEO folk!

suan - Information Retrieval - 06 Scoring, Term Weighting and the Vector Space Model

46

http://www.miislita.com/information-retrieval-tutorial/cosine-similarity-tutorial.html

