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Recap of lecture 5

 Collection and vocabulary statistics: Heaps’ and Zipf’s laws

 Dictionary compression for Boolean indexes

 Dictionary string, blocks, front coding

 Postings compression: Gap encoding, prefix-unique codes

 Variable-Byte and Gamma codes
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collection (text, xml markup etc) 3,600.0 MB

collection (text) 960.0 MB

Term-doc incidence matrix 40,000.0 MB

postings, uncompressed (32-bit words) 400.0 MB

postings, uncompressed (20 bits) 250.0 MB

postings, variable byte encoded 116.0 MB

postings, g-encoded 101.0 MB
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This lecture; IIR Sections 6.2-6.4.3

Ranked retrieval

Scoring documents

Term frequency

Collection statistics

Weighting schemes

Vector space scoring
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Scoring, Term Weighting and the 
Vector Space Model
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Ranked retrieval

Thus far, our queries have all been Boolean.
 Documents either match or don’t.

Good for expert users with precise understanding of their needs and 
the collection.
 Also good for applications: Applications can easily consume 1000s of 

results.

Not good for the majority of users.
 Most users incapable of writing Boolean queries (or they are, but they think 

it’s too much work).

 Most users don’t want to wade through 1000s of results.
 This is particularly true of web search.
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Problem with Boolean search: feast or famine

Boolean queries often result in either too few (=0) or too many 
(1000s) results.

Query 1: “standard user dlink 650” → 200,000 hits

Query 2: “standard user dlink 650 no card found”: 0 hits

 It takes a lot of skill to come up with a query that produces a 
manageable number of hits.
 AND gives too few; OR gives too many
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Ranked retrieval models

Rather than a set of documents satisfying a query expression, in 
ranked retrieval, the system returns an ordering over the (top) 
documents in the collection for a query

Free text queries: Rather than a query language of operators 
and expressions, the user’s query is just one or more words in a 
human language

 In principle, there are two separate choices here, but in practice, 
ranked retrieval has normally been associated with free text 
queries and vice versa
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Feast or famine: not a problem in ranked retrieval

When a system produces a ranked result set, large result sets 
are not an issue
 Indeed, the size of the result set is not an issue

 We just show the top k ( ≈ 10) results

 We don’t overwhelm the user

 Premise: the ranking algorithm works
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Scoring as the basis of ranked retrieval

We wish to return in order the documents most likely to be 
useful to the searcher

How can we rank-order the documents in the collection with 
respect to a query?

Assign a score – say in [0, 1] – to each document

This score measures how well document and query “match”.
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Query-document matching scores

We need a way of assigning a score to a query/document pair

Let’s start with a one-term query

 If the query term does not occur in the document: score should 
be 0

The more frequent the query term in the document, the higher 
the score (should be)

We will look at a number of alternatives for this.
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Take 1: Jaccard coefficient

Recall from Lecture 3: A commonly used measure of overlap of 
two sets A and B

 jaccard(A,B) = |A ∩ B| / |A ∪ B|

 jaccard(A,A) = 1

 jaccard(A,B) = 0 if A ∩ B = 0

A and B don’t have to be the same size.

Always assigns a number between 0 and 1.
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Jaccard coefficient: Scoring example

What is the query-document match score that the Jaccard
coefficient computes for each of the two documents below?

Query: ides of march

Document 1: caesar died in march

Document 2: the long march
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Issues with Jaccard for scoring

 It doesn’t consider term frequency (how many times a term 
occurs in a document)

Rare terms in a collection are more informative than frequent 
terms. Jaccard doesn’t consider this information

We need a more sophisticated way of normalizing for length

Later in this lecture, we’ll use 𝐴 ∩ 𝐵 / 𝐴 ∪ 𝐵

 . . . instead of 𝐴 ∩ 𝐵 / 𝐴 ∪ 𝐵 (Jaccard) for length normalization.
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Recall (Lecture 1): Binary term-document incidence 
matrix
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Antony and Cleopatra Julius Caesar The Tempest Hamlet Othello Macbeth

Antony 1 1 0 0 0 1

Brutus 1 1 0 1 0 0

Caesar 1 1 0 1 1 1

Calpurnia 0 1 0 0 0 0

Cleopatra 1 0 0 0 0 0

mercy 1 0 1 1 1 1

worser 1 0 1 1 1 0

Each document is represented by a binary vector ∈ {0,1}|V|
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Term-document count matrices

Consider the number of occurrences of a term in a document: 
 Each document is a count vector in ℕv: a column below
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Antony and Cleopatra Julius Caesar The Tempest Hamlet Othello Macbeth

Antony 157 73 0 0 0 0

Brutus 4 157 0 1 0 0

Caesar 232 227 0 2 1 1

Calpurnia 0 10 0 0 0 0

Cleopatra 57 0 0 0 0 0

mercy 2 0 3 5 5 1

worser 2 0 1 1 1 0
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Bag of words model

Vector representation doesn’t consider the ordering of words in a 
document

 John is quicker than Mary and Mary is quicker than John have the 
same vectors

This is called the bag of words model.

 In a sense, this is a step back: The positional index was able to 
distinguish these two documents.

We will look at “recovering” positional information later in this 
course.

For now: bag of words model
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Term frequency tf

The term frequency tft,d of term t in document d is defined as 
the number of times that t occurs in d.

We want to use tf when computing query-document match 
scores. But how?

Raw term frequency is not what we want:
 A document with 10 occurrences of the term is more relevant than a 

document with 1 occurrence of the term.

 But not 10 times more relevant.

Relevance does not increase proportionally with term frequency.
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NB: frequency = count in IR
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Log-frequency weighting

The log frequency weight of term t in d is

0 → 0, 1 → 1, 2 → 1.3, 10 → 2, 1000 → 4, etc.

Score for a document-query pair: sum over terms t in both q and d:

 score

The score is 0 if none of the query terms is present in the document.
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Document frequency

Rare terms are more informative than frequent terms
 Recall stop words

Consider a term in the query that is rare in the collection (e.g., 
arachnocentric)

A document containing this term is very likely to be relevant to 
the query arachnocentric

→ We want a high weight for rare terms like arachnocentric.
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Document frequency, continued

Frequent terms are less informative than rare terms

Consider a query term that is frequent in the collection (e.g., high, 
increase, line)

A document containing such a term is more likely to be relevant 
than a document that doesn’t

But it’s not a sure indicator of relevance.

→ For frequent terms, we want high positive weights for words like 
high, increase, and line

But lower weights than for rare terms.

We will use document frequency (df) to capture this.
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idf weight

dft is the document frequency of t: the number of documents 
that contain t
 dft is an inverse measure of the informativeness of t

 dft  N

We define the idf (inverse document frequency) of t by

 We use log (N/dft) instead of N/dft to “dampen” the effect of idf.
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Will turn out the base of the log is immaterial.



suanlab

idf example, suppose N = 1 million
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term dft idft

calpurnia 1 5.999999999

animal 100 4

sunday 1,000 2.999999999

fly 10,000 2

under 100,000 1

the 1,000,000 0

There is one idf value for each term t in a collection.

)/df( log  idf 10 tt N
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Effect of idf on ranking

Does idf have an effect on ranking for one-term queries, like
 iPhone

 idf has no effect on ranking one term queries
 idf affects the ranking of documents for queries with at least two 

terms

 For the query capricious person, idf weighting makes occurrences of 
capricious count for much more in the final document ranking than 
occurrences of person.
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Collection vs. Document frequency

The collection frequency of t is the number of occurrences of t
in the collection, counting multiple occurrences.

Example:

Which word is a better search term (and should get a higher 
weight)?
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Word Collection frequency Document frequency

insurance 10440 3997

try 10422 8760
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tf-idf weighting

The tf-idf weight of a term is the product of its tf weight and its 
idf weight.

Best known weighting scheme in information retrieval
 Note: the “-” in tf-idf is a hyphen, not a minus sign!

 Alternative names: tf.idf, tf x idf

 Increases with the number of occurrences within a document

 Increases with the rarity of the term in the collection
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Score for a document given a query

There are many variants
 How “tf” is computed (with/without logs)

 Whether the terms in the query are also weighted

 … 
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

Score(q,d)  tf.idf t,d
tqd
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Binary → count → weight matrix
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Antony and Cleopatra Julius Caesar The Tempest Hamlet Othello Macbeth

Antony 5.25 3.18 0 0 0 0.35

Brutus 1.21 6.1 0 1 0 0

Caesar 8.59 2.54 0 1.51 0.25 0

Calpurnia 0 1.54 0 0 0 0

Cleopatra 2.85 0 0 0 0 0

mercy 1.51 0 1.9 0.12 5.25 0.88

worser 1.37 0 0.11 4.15 0.25 1.95

Each document is now represented by a real-valued 

vector of tf-idf weights ∈ R|V|



suanlab

Documents as vectors

So we have a |V|-dimensional vector space

Terms are axes of the space

Documents are points or vectors in this space

Very high-dimensional: tens of millions of dimensions when you 
apply this to a web search engine

These are very sparse vectors - most entries are zero.
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Queries as vectors

Key idea 1: Do the same for queries: represent them as vectors in 
the space

Key idea 2: Rank documents according to their proximity to the 
query in this space

proximity = similarity of vectors

proximity ≈ inverse of distance

Recall: We do this because we want to get away from the you’re-
either-in-or-out Boolean model.

 Instead: rank more relevant documents higher than less relevant 
documents
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Formalizing vector space proximity

First cut: distance between two points
 ( = distance between the end points of the two vectors)

Euclidean distance?

Euclidean distance is a bad idea . . .

 . . . because Euclidean distance is large for vectors of different
lengths.
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Why distance is a bad idea

The Euclidean distance 
between q

and d2 is large even though 
the

distribution of terms in the 
query q and the distribution 
of

 terms in the document d2 are

very similar.
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Use angle instead of distance

Thought experiment: take a document d and append it to itself. 
Call this document d′.

“Semantically” d and d′ have the same content

The Euclidean distance between the two documents can be 
quite large

The angle between the two documents is 0, corresponding to 
maximal similarity.

Key idea: Rank documents according to angle with query.
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From angles to cosines

The following two notions are equivalent.
 Rank documents in decreasing order of the angle between query and 

document

 Rank documents in increasing order of cosine(query, document)

Cosine is a monotonically decreasing function for the interval 
[0o, 180o]
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From angles to cosines

But how – and why – should we be computing cosines?
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Length normalization

A vector can be (length-) normalized by dividing each of its 
components by its length – for this we use the L2 norm:

Dividing a vector by its L2 norm makes it a unit (length) vector 
(on surface of unit hypersphere)

Effect on the two documents d and d′ (d appended to itself) 
from earlier slide: they have identical vectors after length-
normalization.
 Long and short documents now have comparable weights
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cosine(query, document)
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Dot product Unit vectors

q
i
is the tf-idf weight of term i in the query

d
i
is the tf-idf weight of term i in the document

cos(q,d) is the cosine similarity of q and d … or,

equivalently, the cosine of the angle between q and d.
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Cosine for length-normalized vectors

For length-normalized vectors, cosine similarity is simply the 
dot product (or scalar product):

for q, d length-normalized.
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Cosine similarity illustrated
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Cosine similarity amongst 3 documents

How similar are the novels

SaS: Sense and Sensibility

PaP: Pride and Prejudice, and

WH: Wuthering Heights?

- Information Retrieval - 06 Scoring, Term Weighting and the Vector Space Model 39

term SaS PaP WH

affection 115 58 20

jealous 10 7 11

gossip 2 0 6

wuthering 0 0 38

Term frequencies (counts)

Note: To simplify this example, we 

don’t do idf weighting.
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3 documents example contd.

Log frequency weighting After length normalization
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term SaS PaP WH

affection 3.06 2.76 2.30

jealous 2.00 1.85 2.04

gossip 1.30 0 1.78

wuthering 0 0 2.58

term SaS PaP WH

affection 0.789 0.832 0.524

jealous 0.515 0.555 0.465

gossip 0.335 0 0.405

wuthering 0 0 0.588

cos(SaS,PaP) ≈ 0.789×0.832+0.515×0.555+0.335×0.0+0.0×0.0 ≈ 0.94

cos(SaS,WH) ≈ 0.79

cos(PaP,WH) ≈ 0.69

Why do we have cos(SaS,PaP) > cos(SaS,WH)?
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Computing cosine scores
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tf-idf weighting has many variants
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Columns headed ‘n’ are acronyms for weight schemes.

Why is the base of the log in idf immaterial?
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Weighting may differ in queries vs documents

Many search engines allow for different weightings for queries vs. 
documents

SMART Notation: denotes the combination in use in an engine, with 
the notation ddd.qqq, using the acronyms from the previous table

A very standard weighting scheme is: lnc.ltc

Document: logarithmic tf (l as first character), no idf and cosine 
normalization

Query: logarithmic tf (l in leftmost column), idf (t in second column), 
cosine normalization …
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tf-idf example: lnc.ltc
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Term Query Document Prod

tf-raw tf-wt df idf wt n’lize tf-raw tf-wt wt n’lize

auto 0 0 5000 2.3 0 0 1 1 1 0.52 0

best 1 1 50000 1.3 1.3 0.34 0 0 0 0 0

car 1 1 10000 2.0 2.0 0.52 1 1 1 0.52 0.27

insurance 1 1 1000 3.0 3.0 0.78 2 1.3 1.3 0.68 0.53

Document: car insurance auto insurance

Query: best car insurance

Exercise: what is N, the number of docs?

Score = 0+0+0.27+0.53 = 0.8

Doc length =



12 02 12 1.32 1.92
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Summary – vector space ranking

Represent the query as a weighted tf-idf vector

Represent each document as a weighted tf-idf vector

Compute the cosine similarity score for the query vector and 
each document vector

Rank documents with respect to the query by score

Return the top K (e.g., K = 10) to the user
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Resources for today’s lecture

 IIR 6.2 – 6.4.3

http://www.miislita.com/information-retrieval-
tutorial/cosine-similarity-tutorial.html
 Term weighting and cosine similarity tutorial for SEO folk!
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