
suanlab

Information Retrieval

Suan Lee

- Information Retrieval - 06 Scoring, Term Weighting and the Vector Space Model 1

suanlab

Recap of lecture 5

 Collection and vocabulary statistics: Heaps’ and Zipf’s laws

 Dictionary compression for Boolean indexes

 Dictionary string, blocks, front coding

 Postings compression: Gap encoding, prefix-unique codes

 Variable-Byte and Gamma codes

- Information Retrieval - 06 Scoring, Term Weighting and the Vector Space Model 2

collection (text, xml markup etc) 3,600.0 MB

collection (text) 960.0 MB

Term-doc incidence matrix 40,000.0 MB

postings, uncompressed (32-bit words) 400.0 MB

postings, uncompressed (20 bits) 250.0 MB

postings, variable byte encoded 116.0 MB

postings, g-encoded 101.0 MB

suanlab

This lecture; IIR Sections 6.2-6.4.3

Ranked retrieval

Scoring documents

Term frequency

Collection statistics

Weighting schemes

Vector space scoring

- Information Retrieval - 06 Scoring, Term Weighting and the Vector Space Model 3

suanlab

Scoring, Term Weighting and the
Vector Space Model

- Information Retrieval - 06 Scoring, Term Weighting and the Vector Space Model 4

suanlab

Ranked retrieval

Thus far, our queries have all been Boolean.
 Documents either match or don’t.

Good for expert users with precise understanding of their needs and
the collection.
 Also good for applications: Applications can easily consume 1000s of

results.

Not good for the majority of users.
 Most users incapable of writing Boolean queries (or they are, but they think

it’s too much work).

 Most users don’t want to wade through 1000s of results.
 This is particularly true of web search.

- Information Retrieval - 06 Scoring, Term Weighting and the Vector Space Model 5

suanlab

Problem with Boolean search: feast or famine

Boolean queries often result in either too few (=0) or too many
(1000s) results.

Query 1: “standard user dlink 650” → 200,000 hits

Query 2: “standard user dlink 650 no card found”: 0 hits

 It takes a lot of skill to come up with a query that produces a
manageable number of hits.
 AND gives too few; OR gives too many

- Information Retrieval - 06 Scoring, Term Weighting and the Vector Space Model 6

suanlab

Ranked retrieval models

Rather than a set of documents satisfying a query expression, in
ranked retrieval, the system returns an ordering over the (top)
documents in the collection for a query

Free text queries: Rather than a query language of operators
and expressions, the user’s query is just one or more words in a
human language

 In principle, there are two separate choices here, but in practice,
ranked retrieval has normally been associated with free text
queries and vice versa

- Information Retrieval - 06 Scoring, Term Weighting and the Vector Space Model 7

suanlab

Feast or famine: not a problem in ranked retrieval

When a system produces a ranked result set, large result sets
are not an issue
 Indeed, the size of the result set is not an issue

 We just show the top k (≈ 10) results

 We don’t overwhelm the user

 Premise: the ranking algorithm works

- Information Retrieval - 06 Scoring, Term Weighting and the Vector Space Model 8

suanlab

Scoring as the basis of ranked retrieval

We wish to return in order the documents most likely to be
useful to the searcher

How can we rank-order the documents in the collection with
respect to a query?

Assign a score – say in [0, 1] – to each document

This score measures how well document and query “match”.

- Information Retrieval - 06 Scoring, Term Weighting and the Vector Space Model 9

suanlab

Query-document matching scores

We need a way of assigning a score to a query/document pair

Let’s start with a one-term query

 If the query term does not occur in the document: score should
be 0

The more frequent the query term in the document, the higher
the score (should be)

We will look at a number of alternatives for this.

- Information Retrieval - 06 Scoring, Term Weighting and the Vector Space Model 10

suanlab

Take 1: Jaccard coefficient

Recall from Lecture 3: A commonly used measure of overlap of
two sets A and B

 jaccard(A,B) = |A ∩ B| / |A ∪ B|

 jaccard(A,A) = 1

 jaccard(A,B) = 0 if A ∩ B = 0

A and B don’t have to be the same size.

Always assigns a number between 0 and 1.

- Information Retrieval - 06 Scoring, Term Weighting and the Vector Space Model 11

suanlab

Jaccard coefficient: Scoring example

What is the query-document match score that the Jaccard
coefficient computes for each of the two documents below?

Query: ides of march

Document 1: caesar died in march

Document 2: the long march

- Information Retrieval - 06 Scoring, Term Weighting and the Vector Space Model 12

suanlab

Issues with Jaccard for scoring

 It doesn’t consider term frequency (how many times a term
occurs in a document)

Rare terms in a collection are more informative than frequent
terms. Jaccard doesn’t consider this information

We need a more sophisticated way of normalizing for length

Later in this lecture, we’ll use 𝐴 ∩ 𝐵 / 𝐴 ∪ 𝐵

 . . . instead of 𝐴 ∩ 𝐵 / 𝐴 ∪ 𝐵 (Jaccard) for length normalization.

- Information Retrieval - 06 Scoring, Term Weighting and the Vector Space Model 13

suanlab

Recall (Lecture 1): Binary term-document incidence
matrix

- Information Retrieval - 06 Scoring, Term Weighting and the Vector Space Model 14

Antony and Cleopatra Julius Caesar The Tempest Hamlet Othello Macbeth

Antony 1 1 0 0 0 1

Brutus 1 1 0 1 0 0

Caesar 1 1 0 1 1 1

Calpurnia 0 1 0 0 0 0

Cleopatra 1 0 0 0 0 0

mercy 1 0 1 1 1 1

worser 1 0 1 1 1 0

Each document is represented by a binary vector ∈ {0,1}|V|

suanlab

Term-document count matrices

Consider the number of occurrences of a term in a document:
 Each document is a count vector in ℕv: a column below

- Information Retrieval - 06 Scoring, Term Weighting and the Vector Space Model 15

Antony and Cleopatra Julius Caesar The Tempest Hamlet Othello Macbeth

Antony 157 73 0 0 0 0

Brutus 4 157 0 1 0 0

Caesar 232 227 0 2 1 1

Calpurnia 0 10 0 0 0 0

Cleopatra 57 0 0 0 0 0

mercy 2 0 3 5 5 1

worser 2 0 1 1 1 0

suanlab

Bag of words model

Vector representation doesn’t consider the ordering of words in a
document

 John is quicker than Mary and Mary is quicker than John have the
same vectors

This is called the bag of words model.

 In a sense, this is a step back: The positional index was able to
distinguish these two documents.

We will look at “recovering” positional information later in this
course.

For now: bag of words model

- Information Retrieval - 06 Scoring, Term Weighting and the Vector Space Model 16

suanlab

Term frequency tf

The term frequency tft,d of term t in document d is defined as
the number of times that t occurs in d.

We want to use tf when computing query-document match
scores. But how?

Raw term frequency is not what we want:
 A document with 10 occurrences of the term is more relevant than a

document with 1 occurrence of the term.

 But not 10 times more relevant.

Relevance does not increase proportionally with term frequency.

- Information Retrieval - 06 Scoring, Term Weighting and the Vector Space Model 17

NB: frequency = count in IR

suanlab

Log-frequency weighting

The log frequency weight of term t in d is

0 → 0, 1 → 1, 2 → 1.3, 10 → 2, 1000 → 4, etc.

Score for a document-query pair: sum over terms t in both q and d:

 score

The score is 0 if none of the query terms is present in the document.

- Information Retrieval - 06 Scoring, Term Weighting and the Vector Space Model 18

 


dqt dt) tflog (1 ,



 


otherwise 0,

0 tfif, tflog 1

10 t,dt,d

t,dw

suanlab

Document frequency

Rare terms are more informative than frequent terms
 Recall stop words

Consider a term in the query that is rare in the collection (e.g.,
arachnocentric)

A document containing this term is very likely to be relevant to
the query arachnocentric

→ We want a high weight for rare terms like arachnocentric.

- Information Retrieval - 06 Scoring, Term Weighting and the Vector Space Model 19

suanlab

Document frequency, continued

Frequent terms are less informative than rare terms

Consider a query term that is frequent in the collection (e.g., high,
increase, line)

A document containing such a term is more likely to be relevant
than a document that doesn’t

But it’s not a sure indicator of relevance.

→ For frequent terms, we want high positive weights for words like
high, increase, and line

But lower weights than for rare terms.

We will use document frequency (df) to capture this.

- Information Retrieval - 06 Scoring, Term Weighting and the Vector Space Model 20

suanlab

idf weight

dft is the document frequency of t: the number of documents
that contain t
 dft is an inverse measure of the informativeness of t

 dft  N

We define the idf (inverse document frequency) of t by

 We use log (N/dft) instead of N/dft to “dampen” the effect of idf.

- Information Retrieval - 06 Scoring, Term Weighting and the Vector Space Model 21

)/df(log idf 10 tt N

Will turn out the base of the log is immaterial.

suanlab

idf example, suppose N = 1 million

- Information Retrieval - 06 Scoring, Term Weighting and the Vector Space Model 22

term dft idft

calpurnia 1 5.999999999

animal 100 4

sunday 1,000 2.999999999

fly 10,000 2

under 100,000 1

the 1,000,000 0

There is one idf value for each term t in a collection.

)/df(log idf 10 tt N

suanlab

Effect of idf on ranking

Does idf have an effect on ranking for one-term queries, like
 iPhone

 idf has no effect on ranking one term queries
 idf affects the ranking of documents for queries with at least two

terms

 For the query capricious person, idf weighting makes occurrences of
capricious count for much more in the final document ranking than
occurrences of person.

- Information Retrieval - 06 Scoring, Term Weighting and the Vector Space Model 23

suanlab

Collection vs. Document frequency

The collection frequency of t is the number of occurrences of t
in the collection, counting multiple occurrences.

Example:

Which word is a better search term (and should get a higher
weight)?

- Information Retrieval - 06 Scoring, Term Weighting and the Vector Space Model 24

Word Collection frequency Document frequency

insurance 10440 3997

try 10422 8760

suanlab

tf-idf weighting

The tf-idf weight of a term is the product of its tf weight and its
idf weight.

Best known weighting scheme in information retrieval
 Note: the “-” in tf-idf is a hyphen, not a minus sign!

 Alternative names: tf.idf, tf x idf

 Increases with the number of occurrences within a document

 Increases with the rarity of the term in the collection

- Information Retrieval - 06 Scoring, Term Weighting and the Vector Space Model 25

)df/(log)tf1log(w 10,, tdt N
dt



suanlab

Score for a document given a query

There are many variants
 How “tf” is computed (with/without logs)

 Whether the terms in the query are also weighted

 …

- Information Retrieval - 06 Scoring, Term Weighting and the Vector Space Model 26



Score(q,d)  tf.idf t,d
tqd



suanlab

Binary → count → weight matrix

- Information Retrieval - 06 Scoring, Term Weighting and the Vector Space Model 27

Antony and Cleopatra Julius Caesar The Tempest Hamlet Othello Macbeth

Antony 5.25 3.18 0 0 0 0.35

Brutus 1.21 6.1 0 1 0 0

Caesar 8.59 2.54 0 1.51 0.25 0

Calpurnia 0 1.54 0 0 0 0

Cleopatra 2.85 0 0 0 0 0

mercy 1.51 0 1.9 0.12 5.25 0.88

worser 1.37 0 0.11 4.15 0.25 1.95

Each document is now represented by a real-valued

vector of tf-idf weights ∈ R|V|

suanlab

Documents as vectors

So we have a |V|-dimensional vector space

Terms are axes of the space

Documents are points or vectors in this space

Very high-dimensional: tens of millions of dimensions when you
apply this to a web search engine

These are very sparse vectors - most entries are zero.

- Information Retrieval - 06 Scoring, Term Weighting and the Vector Space Model 28

suanlab

Queries as vectors

Key idea 1: Do the same for queries: represent them as vectors in
the space

Key idea 2: Rank documents according to their proximity to the
query in this space

proximity = similarity of vectors

proximity ≈ inverse of distance

Recall: We do this because we want to get away from the you’re-
either-in-or-out Boolean model.

 Instead: rank more relevant documents higher than less relevant
documents

- Information Retrieval - 06 Scoring, Term Weighting and the Vector Space Model 29

suanlab

Formalizing vector space proximity

First cut: distance between two points
 (= distance between the end points of the two vectors)

Euclidean distance?

Euclidean distance is a bad idea . . .

 . . . because Euclidean distance is large for vectors of different
lengths.

- Information Retrieval - 06 Scoring, Term Weighting and the Vector Space Model 30

suanlab

Why distance is a bad idea

The Euclidean distance
between q

and d2 is large even though
the

distribution of terms in the
query q and the distribution
of

 terms in the document d2 are

very similar.

- Information Retrieval - 06 Scoring, Term Weighting and the Vector Space Model 31

suanlab

Use angle instead of distance

Thought experiment: take a document d and append it to itself.
Call this document d′.

“Semantically” d and d′ have the same content

The Euclidean distance between the two documents can be
quite large

The angle between the two documents is 0, corresponding to
maximal similarity.

Key idea: Rank documents according to angle with query.

- Information Retrieval - 06 Scoring, Term Weighting and the Vector Space Model 32

suanlab

From angles to cosines

The following two notions are equivalent.
 Rank documents in decreasing order of the angle between query and

document

 Rank documents in increasing order of cosine(query, document)

Cosine is a monotonically decreasing function for the interval
[0o, 180o]

- Information Retrieval - 06 Scoring, Term Weighting and the Vector Space Model 33

suanlab

From angles to cosines

But how – and why – should we be computing cosines?

- Information Retrieval - 06 Scoring, Term Weighting and the Vector Space Model 34

suanlab

Length normalization

A vector can be (length-) normalized by dividing each of its
components by its length – for this we use the L2 norm:

Dividing a vector by its L2 norm makes it a unit (length) vector
(on surface of unit hypersphere)

Effect on the two documents d and d′ (d appended to itself)
from earlier slide: they have identical vectors after length-
normalization.
 Long and short documents now have comparable weights

- Information Retrieval - 06 Scoring, Term Weighting and the Vector Space Model 35


i ixx 2

2



suanlab

cosine(query, document)

- Information Retrieval - 06 Scoring, Term Weighting and the Vector Space Model 36











V

i i

V

i i

V

i ii

dq

dq

d

d

q

q

dq

dq
dq

1

2

1

2

1),cos(











Dot product Unit vectors

q
i
is the tf-idf weight of term i in the query

d
i
is the tf-idf weight of term i in the document

cos(q,d) is the cosine similarity of q and d … or,

equivalently, the cosine of the angle between q and d.

suanlab

Cosine for length-normalized vectors

For length-normalized vectors, cosine similarity is simply the
dot product (or scalar product):

for q, d length-normalized.

- Information Retrieval - 06 Scoring, Term Weighting and the Vector Space Model 37



cos(q ,d)  q d  qidi
i1

V



suanlab

Cosine similarity illustrated

- Information Retrieval - 06 Scoring, Term Weighting and the Vector Space Model 38

suanlab

Cosine similarity amongst 3 documents

How similar are the novels

SaS: Sense and Sensibility

PaP: Pride and Prejudice, and

WH: Wuthering Heights?

- Information Retrieval - 06 Scoring, Term Weighting and the Vector Space Model 39

term SaS PaP WH

affection 115 58 20

jealous 10 7 11

gossip 2 0 6

wuthering 0 0 38

Term frequencies (counts)

Note: To simplify this example, we

don’t do idf weighting.

suanlab

3 documents example contd.

Log frequency weighting After length normalization

- Information Retrieval - 06 Scoring, Term Weighting and the Vector Space Model 40

term SaS PaP WH

affection 3.06 2.76 2.30

jealous 2.00 1.85 2.04

gossip 1.30 0 1.78

wuthering 0 0 2.58

term SaS PaP WH

affection 0.789 0.832 0.524

jealous 0.515 0.555 0.465

gossip 0.335 0 0.405

wuthering 0 0 0.588

cos(SaS,PaP) ≈ 0.789×0.832+0.515×0.555+0.335×0.0+0.0×0.0 ≈ 0.94

cos(SaS,WH) ≈ 0.79

cos(PaP,WH) ≈ 0.69

Why do we have cos(SaS,PaP) > cos(SaS,WH)?

suanlab

Computing cosine scores

- Information Retrieval - 06 Scoring, Term Weighting and the Vector Space Model 41

suanlab

tf-idf weighting has many variants

- Information Retrieval - 06 Scoring, Term Weighting and the Vector Space Model 42

Columns headed ‘n’ are acronyms for weight schemes.

Why is the base of the log in idf immaterial?

suanlab

Weighting may differ in queries vs documents

Many search engines allow for different weightings for queries vs.
documents

SMART Notation: denotes the combination in use in an engine, with
the notation ddd.qqq, using the acronyms from the previous table

A very standard weighting scheme is: lnc.ltc

Document: logarithmic tf (l as first character), no idf and cosine
normalization

Query: logarithmic tf (l in leftmost column), idf (t in second column),
cosine normalization …

- Information Retrieval - 06 Scoring, Term Weighting and the Vector Space Model 43

A bad idea?

suanlab

tf-idf example: lnc.ltc

- Information Retrieval - 06 Scoring, Term Weighting and the Vector Space Model 44

Term Query Document Prod

tf-raw tf-wt df idf wt n’lize tf-raw tf-wt wt n’lize

auto 0 0 5000 2.3 0 0 1 1 1 0.52 0

best 1 1 50000 1.3 1.3 0.34 0 0 0 0 0

car 1 1 10000 2.0 2.0 0.52 1 1 1 0.52 0.27

insurance 1 1 1000 3.0 3.0 0.78 2 1.3 1.3 0.68 0.53

Document: car insurance auto insurance

Query: best car insurance

Exercise: what is N, the number of docs?

Score = 0+0+0.27+0.53 = 0.8

Doc length =



12 02 12 1.32 1.92

suanlab

Summary – vector space ranking

Represent the query as a weighted tf-idf vector

Represent each document as a weighted tf-idf vector

Compute the cosine similarity score for the query vector and
each document vector

Rank documents with respect to the query by score

Return the top K (e.g., K = 10) to the user

- Information Retrieval - 06 Scoring, Term Weighting and the Vector Space Model 45

suanlab

Resources for today’s lecture

 IIR 6.2 – 6.4.3

http://www.miislita.com/information-retrieval-
tutorial/cosine-similarity-tutorial.html
 Term weighting and cosine similarity tutorial for SEO folk!

- Information Retrieval - 06 Scoring, Term Weighting and the Vector Space Model 46

http://www.miislita.com/information-retrieval-tutorial/cosine-similarity-tutorial.html

