

05 Index Compression

Suanlab - Information Retrieval - 05 Index Compression

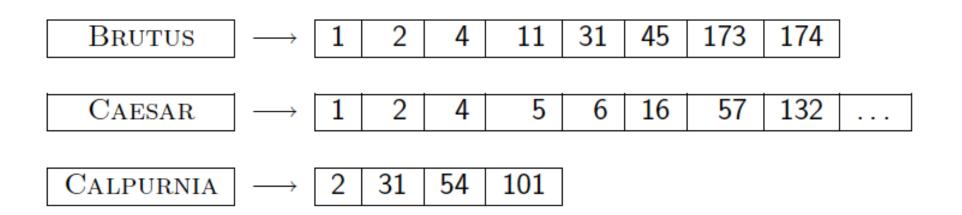
Last lecture – index construction

Sort-based indexing

- Naïve in-memory inversion
- Blocked Sort-Based Indexing
 - Merge sort is effective for disk-based sorting (avoid seeks!)

Single-Pass In-Memory Indexing

- No global dictionary
 - Generate separate dictionary for each block
- Don't sort postings
 - Accumulate postings in postings lists as they occur
- Distributed indexing using MapReduce
- Dynamic indexing: Multiple indices, logarithmic merge



Collection statistics in more detail (with RCV1)

- How big will the dictionary and postings be?
- Dictionary compression
- Postings compression

Why compression (in general)?

- Use less disk space
 - Saves a little money
- Keep more stuff in memory
 - Increases speed
- Increase speed of data transfer from disk to memory
 - [read compressed data | decompress] is faster than [read uncompressed data]
 - Premise: Decompression algorithms are fast
 - True of the decompression algorithms we use

Why compression for inverted indexes?

Dictionary

- Make it small enough to keep in main memory
- Make it so small that you can keep some postings lists in main memory too
- Postings file(s)
 - Reduce disk space needed
 - Decrease time needed to read postings lists from disk
 - Large search engines keep a significant part of the postings in memory.
 - Compression lets you keep more in memory
- We will devise various IR-specific compression schemes

Recall Reuters RCV1

symbol	statistic	value			
Ν	documents	800,000			
L	avg. # tokens per doc	200			
Μ	terms (= word types)	400,000			
	avg. # bytes per token (incl. spaces/punct.)	6			
	avg. # bytes per token (without spaces/punct.)	4.5			
	avg. # bytes per term	7.5			
	non-positional postings	100,000,000			

Index parameters vs. what we index

" Δ %" indicates the reduction in size from the previous line. "T%" is the cumulative (``total'') reduction from unfiltered.

size of word types (terms)			non-positional postings			positional postings				
	dictionary			non-positional in	dex		positional index			
	number	Δ%	Т%	number	umber Δ% T%		number	Δ%	Т%	
Unfiltered	484,494			109,971,179			197,879,290			
No numbers	473,723	-2	-2	100,680,242	-8	-8	179,158,204	-9	-9	
Case folding	391,523	-17	-19	96,969,056	-3	-12	179,158,204	0	-9	
30 stopwords	391,493	-0	-19	83,390,443	-14	-24	121,857,825	-31	-38	
150 stopwords	391,373	-0	-19	67,001,847	-30	-39	94,516,599	-47	-52	
stemming	322,383	-17	-33	63,812,300	-4	-42	94,516,599	0	-52	

Exercise: give intuitions for all the '0' entries. Why do some zero entries correspond to big deltas in other columns?

Lossless vs. lossy compression

- Lossless compression: All information is preserved.
 - What we mostly do in IR.
- Lossy compression: Discard some information
- Several of the preprocessing steps can be viewed as lossy compression: case folding, stop words, stemming, number elimination.
- Chap/Lecture 7: Prune postings entries that are unlikely to turn up in the top k list for any query.
 - Almost no loss quality for top *k* list.

Vocabulary vs. collection size

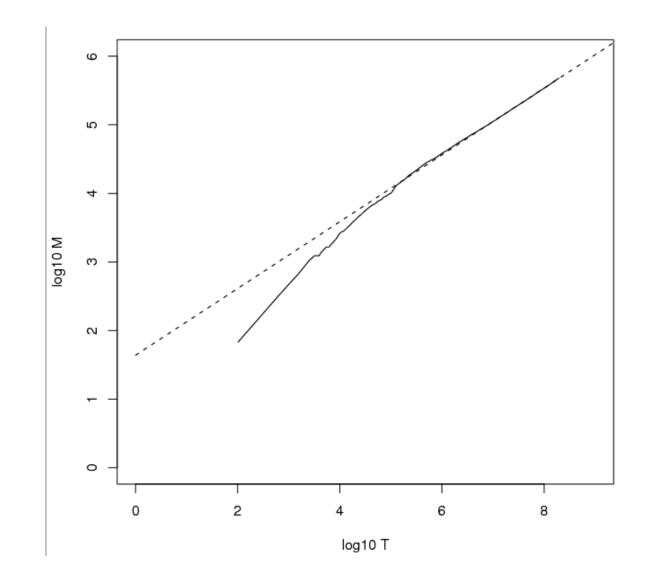
- How big is the term vocabulary?
 - That is, how many distinct words are there?
- Can we assume an upper bound?
 - Not really: At least $70^{20} = 10^{37}$ different words of length 20
- In practice, the vocabulary will keep growing with the collection size
 - \bullet Especially with Unicode $\textcircled{\sc op}$

Vocabulary vs. collection size

- Heaps' law: $M = kT^b$
- *M* is the size of the vocabulary, *T* is the number of tokens in the collection
- Typical values: $30 \le k \le 100$ and $b \approx 0.5$
- In a log-log plot of vocabulary size M vs. T, Heaps' law predicts a line with slope about ¹/₂
 - It is the simplest possible relationship between the two in log-log space
 - An empirical finding ("empirical law")

Heaps' Law

- For RCV1, the dashed line
- $\log_{10}M = 0.49 \log_{10}T + 1.64$ is the best least squares fit.
- Thus, $M = 10^{1.64} T^{0.49}$ so $k = 10^{1.64} \approx 44$ and b = 0.49.
- Good empirical fit for Reuters RCV1 !
- For first 1,000,020 tokens,
- law predicts 38,323 terms;
- actually, 38,365 terms



Exercises

- What is the effect of including spelling errors, vs. automatically correcting spelling errors on Heaps' law?
- Compute the vocabulary size *M* for this scenario:
 - Looking at a collection of web pages, you find that there are 3000 different terms in the first 10,000 tokens and 30,000 different terms in the first 1,000,000 tokens.
 - Assume a search engine indexes a total of 20,000,000,000 (2 × 10¹⁰) pages, containing 200 tokens on average
 - What is the size of the vocabulary of the indexed collection as predicted by Heaps' law?

Zipf's law

- Heaps' law gives the vocabulary size in collections.
- We also study the relative frequencies of terms.
- In natural language, there are a few very frequent terms and very many very rare terms.
- Zipf's law: The *i*th most frequent term has frequency proportional to 1/*i*.
- $cf_i \propto 1/i = K/i$ where *K* is a normalizing constant
- cf_i is <u>collection frequency</u>: the number of occurrences of the term t_i in the collection.

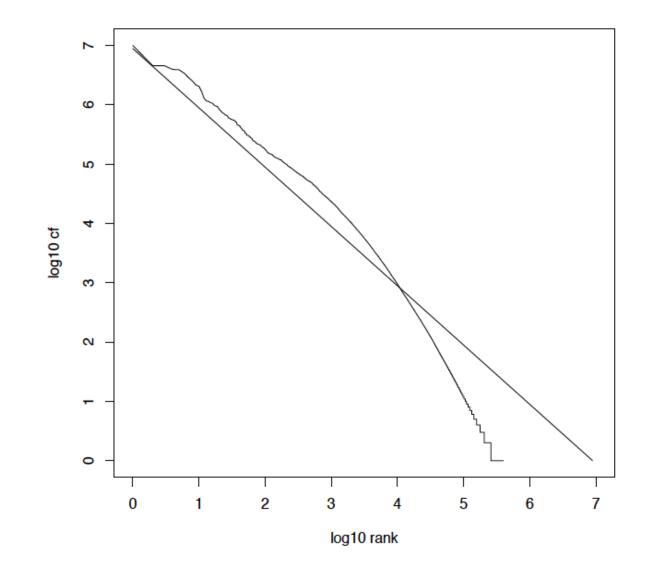
Zipf consequences

If the most frequent term (the) occurs cf₁ times

- then the second most frequent term (*of*) occurs $cf_1/2$ times
- the third most frequent term (and) occurs $cf_1/3$ times ...
- Equivalent: $cf_i = K/i$ where *K* is a normalizing factor, so
 - $\log \operatorname{cf}_i = \log K \log i$
 - Linear relationship between log cf_i and log i

Another power law relationship

Zipf's law for Reuters RCV1



Compression

- Now, we will consider compressing the space for the dictionary and postings
 - Basic Boolean index only
 - No study of positional indexes, etc.
 - We will consider compression schemes

Dictionary Compression

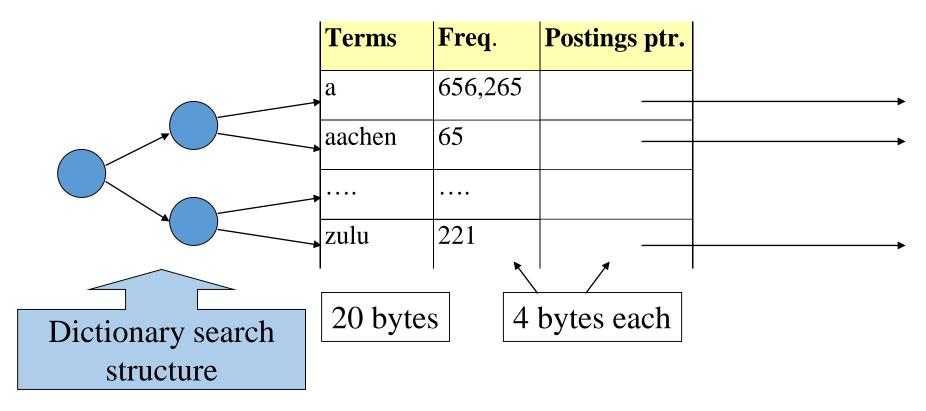
Suanlab - Information Retrieval - 05 Index Compression

Why compress the dictionary?

- Search begins with the dictionary
- We want to keep it in memory
- Memory footprint competition with other applications
- Embedded/mobile devices may have very little memory
- Even if the dictionary isn't in memory, we want it to be small for a fast search startup time
- So, compressing the dictionary is important

Dictionary storage - first cut

- Array of fixed-width entries
 - ~400,000 terms; 28 bytes/term = 11.2 MB.

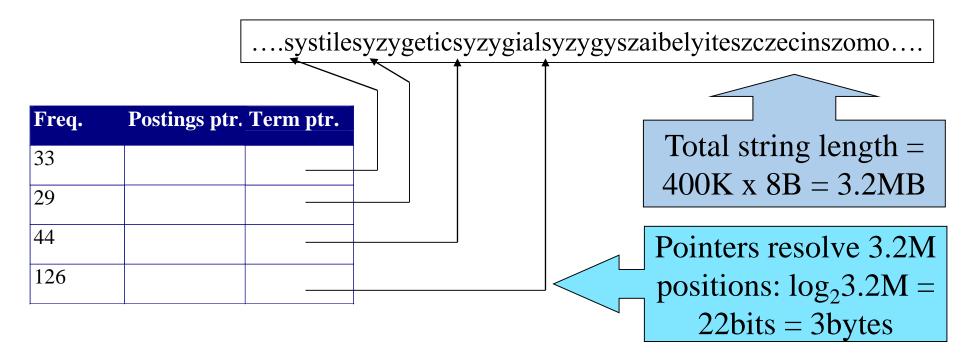


Fixed-width terms are wasteful

- Most of the bytes in the Term column are wasted we allot 20 bytes for 1 letter terms.
 - And we still can't handle *supercalifragilisticexpialidocious* or *hydrochlorofluorocarbons*.
- Written English averages ~4.5 characters/word.
 - Exercise: Why is/isn't this the number to use for estimating the dictionary size?
- Ave. dictionary word in English: ~8 characters
 - How do we use ~8 characters per dictionary term?
- Short words dominate token counts but not type average.

Compressing the term list: Dictionary-as-a-String

- Store dictionary as a (long) string of characters:
 - Pointer to next word shows end of current word
 - Hope to save up to 60% of dictionary space.



Space for dictionary as a string

- 4 bytes per term for Freq.
- 4 bytes per term for pointer to Postings.
- 3 bytes per term pointer

```
Now avg. 11
bytes/term,
not 20.
```

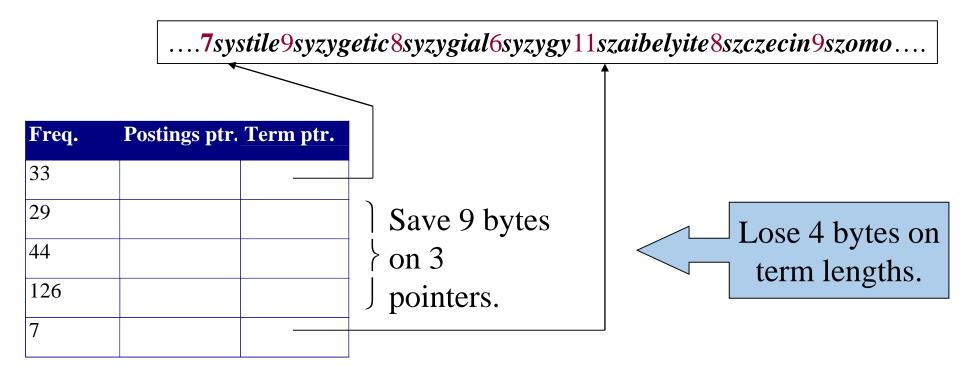
• Avg. 8 bytes per term in term string

• 400K terms x $19 \Rightarrow 7.6$ MB (against 11.2MB for fixed width)

Blocking

Store pointers to every kth term string.

- Example below: *k*=4.
- Need to store term lengths (1 extra byte)



Net

- Example for block size k = 4
- Where we used 3 bytes/pointer without blocking
 - 3 x 4 = 12 bytes,
- now we use 3 + 4 = 7 bytes.

Shaved another ~0.5MB. This reduces the size of the dictionary from 7.6 MB to 7.1 MB. We can save more with larger *k*.

Why not go with larger k?

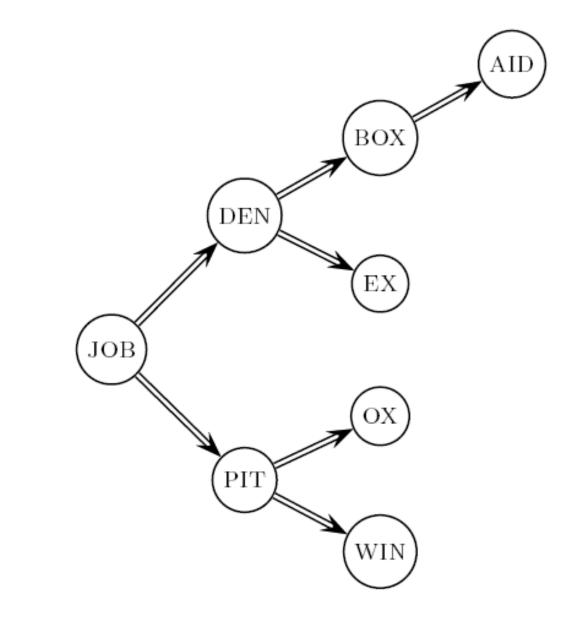
Exercise

Estimate the space usage (and savings compared to 7.6 MB) with blocking, for block sizes of k = 4, 8 and 16.

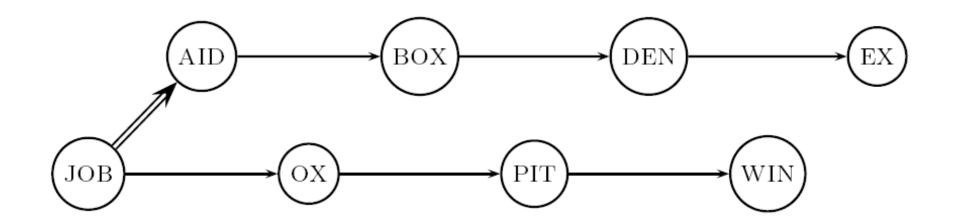
Dictionary search without blocking

 Assuming each dictionary term equally likely in query (not really so in practice!), average number of comparisons = (1+2·2+4·3+4)/8 ≈ 2.6

Exercise: what if the frequencies of qu ery terms were non-uniform but kno wn, how would you structure the dicti onary search tree?



Dictionary search with blocking



Binary search down to 4-term block;

- Then linear search through terms in block.
- Blocks of 4 (binary tree), avg. = (1+2·2+2·3+2·4+5)/8 = 3 compares

Exercise

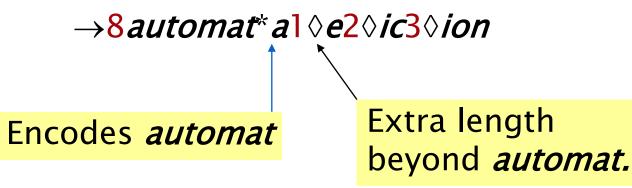
Estimate the impact on search performance (and slowdown compared to k=1) with blocking, for block sizes of k = 4, 8 and 16.

Front coding

Front-coding:

- Sorted words commonly have long common prefix store differences only
- (for last k-1 in a block of k)

8automata8automate9automatic10automation



Begins to resemble general string compression.

RCV1 dictionary compression summary

Technique	Size in MB
Fixed width	11.2
Dictionary-as-String with pointers to every term	7.6
Also, blocking $k = 4$	7.1
Also, Blocking + front coding	5.9

Postings Compression

SUAN ab - Information Retrieval - 05 Index Compression

Postings compression

- The postings file is much larger than the dictionary, factor of at least 10.
- Key desideratum: store each posting compactly.
- A posting for our purposes is a docID.
- For Reuters (800,000 documents), we would use 32 bits per docID when using 4-byte integers.
- Alternatively, we can use $\log_2 800,000 \approx 20$ bits per docID.
- Our goal: use far fewer than 20 bits per docID.

Postings: two conflicting forces

- A term like *arachnocentric* occurs in maybe one doc out of a million we would like to store this posting using log₂ 1M ~ 20 bits.
- A term like *the* occurs in virtually every doc, so 20 bits/posting is too expensive.
 - Prefer 0/1 bitmap vector in this case

Postings file entry

- We store the list of docs containing a term in increasing order of docID.
 - *computer*: 33,47,154,159,202 ...
- Consequence: it suffices to store gaps.
 - **3**3,14,107,**5**43 ...

<u>Hope</u>: most gaps can be encoded/stored with far fewer than 20 bits.

Three postings entries

	encoding	postings	list								
THE	docIDs			283042		283043		283044		283045	
	gaps				1		1		1		
COMPUTER	docIDs			283047		283154		283159		283202	
	gaps				107		5		43		
ARACHNOCENTRIC	docIDs	252000		500100							
	gaps	252000	248100								

Variable length encoding

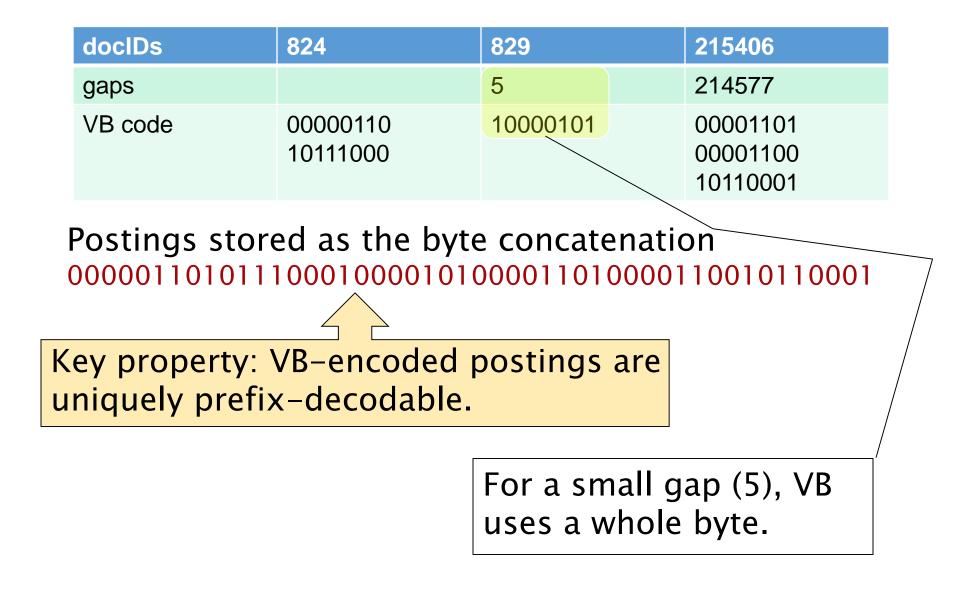
• Aim:

- For *arachnocentric*, we will use ~20 bits/gap entry.
- For *the*, we will use ~1 bit/gap entry.
- If the average gap for a term is G, we want to use ~log₂G bits/gap entry.
- Key challenge: encode every integer (gap) with about as few bits as needed for that integer.
- This requires a variable length encoding
- Variable length codes achieve this by using short codes for small numbers

Variable Byte (VB) codes

- For a gap value G, we want to use close to the fewest bytes needed to hold log₂ G bits
- Begin with one byte to store G and dedicate 1 bit in it to be a <u>continuation</u> bit c
- If $G \leq 127$, binary-encode it in the 7 available bits and set c = 1
- Else encode G's lower-order 7 bits and then use additional bytes to encode the higher order bits using the same algorithm
- At the end set the continuation bit of the last byte to 1 (c = 1) and for the other bytes c = 0

Example



Other variable unit codes

- Instead of bytes, we can also use a different "unit of alignment": 32 bits (words), 16 bits, 4 bits (nibbles).
- Variable byte alignment wastes space if you have many small gaps nibbles do better in such cases.
- Variable byte codes:
 - Used by many commercial/research systems
 - Good low-tech blend of variable-length coding and sensitivity to computer memory alignment matches (vs. bit-level codes, which we look at next).
- There is also recent work on word-aligned codes that pack a variable number of gaps into one word

Unary code

- Represent n as n 1s with a final 0.
- Unary code for 3 is 1110.
- Unary code for 40 is
- Unary code for 80 is:

This doesn't look promising, but....

Gamma codes

- We can compress better with <u>bit-level</u> codes
 - The Gamma code is the best known of these.
- Represent a gap G as a pair length and offset
- *offset* is *G* in binary, with the leading bit cut off
 - For example $13 \rightarrow 1101 \rightarrow 101$
- In the length of offset
 - For 13 (offset 101), this is 3.
- We encode *length* with *unary code*: 1110.
- Gamma code of 13 is the concatenation of *length* and *offset*: 1110101

Gamma code examples

number	length	offset	γ-code
0			none
1	0		0
2	10	0	10,0
3	10	1	10,1
4	110	00	110,00
9	1110	001	1110,001
13	1110	101	1110,101
24	11110	1000	11110,1000
511	11111110	11111111	11111110,1111111
1025	1111111110	000000001	1111111110,000000001

Gamma code properties

- *G* is encoded using $2 \lfloor \log_2 G \rfloor + 1$ bits
 - Length of offset is $\lfloor \log_2 G \rfloor$ bits
 - Length of length is $\lfloor \log_2 G \rfloor + 1$ bits
- All gamma codes have an odd number of bits
- Almost within a factor of 2 of best possible, $\log_2 G$
- Gamma code is uniquely prefix-decodable, like VB
- Gamma code can be used for any distribution
- Gamma code is parameter-free

Gamma seldom used in practice

- Machines have word boundaries 8, 16, 32, 64 bits
 - Operations that cross word boundaries are slower
- Compressing and manipulating at the granularity of bits can be slow
- Variable byte encoding is aligned and thus potentially more efficient
- Regardless of efficiency, variable byte is conceptually simpler at little additional space cost

RCV1 compression

Data structure	Size in MB
dictionary, fixed-width	11.2
dictionary, term pointers into string	7.6
with blocking, $k = 4$	7.1
with blocking & front coding	5.9
collection (text, xml markup etc)	3,600.0
collection (text)	960.0
Term-doc incidence matrix	40,000.0
postings, uncompressed (32-bit words)	400.0
postings, uncompressed (20 bits)	250.0
postings, variable byte encoded	116.0
postings, γ–encoded	101.0

Index compression summary

- We can now create an index for highly efficient Boolean retrieval that is very space efficient
- Only 4% of the total size of the collection
- Only 10-15% of the total size of the <u>text</u> in the collection
- However, we've ignored positional information
- Hence, space savings are less for indexes used in practice
 - But techniques substantially the same.

Resources for today's lecture

- *IIR* 5
- ■*MG* 3.3, 3.4.
- F. Scholer, H.E. Williams and J. Zobel. 2002. Compression of Inverted Indexes For Fast Query Evaluation. *Proc. ACM-SIGIR* 2002.
 - Variable byte codes
- V. N. Anh and A. Moffat. 2005. Inverted Index Compression Using Word-Aligned Binary Codes. *Information Retrieval* 8: 151– 166.
 - Word aligned codes