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Last lecture – index construction

Sort-based indexing
 Naïve in-memory inversion

 Blocked Sort-Based Indexing
 Merge sort is effective for disk-based sorting (avoid seeks!)

Single-Pass In-Memory Indexing
 No global dictionary

 Generate separate dictionary for each block

 Don’t sort postings
 Accumulate postings in postings lists as they occur

Distributed indexing using MapReduce

Dynamic indexing: Multiple indices, logarithmic merge
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Today

Collection statistics in more detail (with RCV1)
 How big will the dictionary and postings be?

Dictionary compression

Postings compression
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Why compression (in general)?

Use less disk space
 Saves a little money

Keep more stuff in memory
 Increases speed

 Increase speed of data transfer from disk to memory
 [read compressed data | decompress] is faster than 

[read uncompressed data]

 Premise: Decompression algorithms are fast
 True of the decompression algorithms we use
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Why compression for inverted indexes?

 Dictionary

Make it small enough to keep in main memory

Make it so small that you can keep some postings lists in main 
memory too

 Postings file(s)

Reduce disk space needed

Decrease time needed to read postings lists from disk

 Large search engines keep a significant part of the postings in memory.
 Compression lets you keep more in memory

 We will devise various IR-specific compression schemes
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Recall Reuters RCV1

symbol statistic value

N documents 800,000

L avg. # tokens per doc 200

M terms (= word types) 400,000

avg. # bytes per token
(incl. spaces/punct.)

6

avg. # bytes per token
(without spaces/punct.)

4.5

avg. # bytes per term 7.5

non-positional postings 100,000,000

- Information Retrieval  - 05 Index Compression 7



suanlab

Index parameters vs. what we index
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size of word types (terms) non-positional
postings

positional postings

dictionary non-positional index positional index

number ∆% T% number ∆% T% number ∆% T%

Unfiltered 484,494 109,971,179 197,879,290

No numbers 473,723 -2 -2 100,680,242 -8 -8 179,158,204 -9 -9

Case folding 391,523 -17 -19 96,969,056 -3 -12 179,158,204 0 -9

30 stopwords 391,493 -0 -19 83,390,443 -14 -24 121,857,825 -31 -38

150 stopwords 391,373 -0 -19 67,001,847 -30 -39 94,516,599 -47 -52

stemming 322,383 -17 -33 63,812,300 -4 -42 94,516,599 0 -52

Exercise: give intuitions for all the ‘0’ entries. Why do some zero entries correspond to big 
deltas in other columns? 

"∆%" indicates the reduction in size from the previous line.
”T%” is the cumulative (``total'') reduction from unfiltered.
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Lossless vs. lossy compression

Lossless compression: All information is preserved.
What we mostly do in IR.

Lossy compression: Discard some information

Several of the preprocessing steps can be viewed as lossy
compression: case folding, stop words, stemming, number 
elimination.

Chap/Lecture 7: Prune postings entries that are unlikely to turn 
up in the top k list for any query.
Almost no loss quality for top k list.
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Vocabulary vs. collection size

How big is the term vocabulary?
 That is, how many distinct words are there?

Can we assume an upper bound?
Not really: At least 7020 = 1037 different words of length 20

 In practice, the vocabulary will keep growing with the collection 
size
 Especially with Unicode 
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Vocabulary vs. collection size

Heaps’ law: M = kTb

M is the size of the vocabulary, T is the number of tokens in the 
collection

Typical values: 30 ≤ k ≤ 100 and b ≈ 0.5

 In a log-log plot of vocabulary size M vs. T, Heaps’ law predicts a 
line with slope about ½
 It is the simplest possible relationship between the two in log-log 

space

An empirical finding (“empirical law”)
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Heaps’ Law

 For RCV1, the dashed line

 log10M = 0.49 log10T + 1.64 is the 
best least squares fit.

 Thus, M = 101.64T0.49 so k = 101.64 ≈ 
44 and b = 0.49.

 Good empirical fit for Reuters 
RCV1 !

 For first 1,000,020 tokens,

 law predicts 38,323 terms;

 actually, 38,365 terms
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Exercises

What is the effect of including spelling errors, vs. automatically 
correcting spelling errors on Heaps’ law?

Compute the vocabulary size M for this scenario:
 Looking at a collection of web pages, you find that there are 3000 

different terms in the first 10,000 tokens and 30,000 different terms 
in the first 1,000,000 tokens.

Assume a search engine indexes a total of 20,000,000,000 (2 × 1010) 
pages, containing 200 tokens on average

What is the size of the vocabulary of the indexed collection as 
predicted by Heaps’ law?
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Zipf’s law

Heaps’ law gives the vocabulary size in collections.

We also study the relative frequencies of terms.

 In natural language, there are a few very frequent terms and 
very many very rare terms.

Zipf’s law: The ith most frequent term has frequency 
proportional to 1/i .

cfi∝ 1/i = K/i where K is a normalizing constant

cfi is collection frequency: the number of occurrences of the 
term ti in the collection.
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Zipf consequences

 If the most frequent term (the) occurs cf1 times 
 then the second most frequent term (of) occurs cf1/2 times

 the third most frequent term (and) occurs cf1/3 times … 

Equivalent: cfi = K/i where K is a normalizing factor, so
 log cfi = log K - log i

 Linear relationship between log cfi and log i

Another power law relationship
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Zipf’s law for Reuters RCV1
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Compression

Now, we will consider compressing the space for the dictionary 
and postings

Basic Boolean index only

No study of positional indexes, etc.

We will consider compression schemes
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Dictionary Compression
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Why compress the dictionary?

Search begins with the dictionary

We want to keep it in memory

Memory footprint competition with other applications

Embedded/mobile devices may have very little memory

Even if the dictionary isn’t in memory, we want it to be small for 
a fast search startup time

So, compressing the dictionary is important
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Dictionary storage - first cut

Array of fixed-width entries
~400,000 terms; 28 bytes/term = 11.2 MB.
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Terms Freq. Postings ptr. 

a 656,265  

aachen 65  

…. ….  

zulu 221  
 

 

Dictionary search

structure

20 bytes 4 bytes each
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Fixed-width terms are wasteful

Most of the bytes in the Term column are wasted – we allot 20 
bytes for 1 letter terms.
 And we still can’t handle supercalifragilisticexpialidocious or hydrochlorofluorocarbons.

Written English averages ~4.5 characters/word.
 Exercise: Why is/isn’t this the number to use for estimating the 

dictionary size?

Ave. dictionary word in English: ~8 characters
How do we use ~8 characters per dictionary term?

Short words dominate token counts but not type average.
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Compressing the term list: Dictionary-as-a-String

Store dictionary as a (long) string of characters:
 Pointer to next word shows end of current word

Hope to save up to 60% of dictionary space.
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….systilesyzygeticsyzygialsyzygyszaibelyiteszczecinszomo….

Freq. Postings ptr. Term ptr. 

33   

29   

44   

126   
 

 

Total string length =

400K x 8B = 3.2MB

Pointers resolve 3.2M

positions: log23.2M =

22bits = 3bytes



suanlab

Space for dictionary as a string

4 bytes per term for Freq.

4 bytes per term for pointer to Postings.

3 bytes per term pointer

Avg. 8 bytes per term in term string

400K terms x 19  7.6 MB (against 11.2MB for fixed width)
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 not 20.
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Blocking

Store pointers to every kth term string.
 Example below: k=4.

Need to store term lengths (1 extra byte)
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….7systile9syzygetic8syzygial6syzygy11szaibelyite8szczecin9szomo….

Freq. Postings ptr. Term ptr. 

33   

29   

44   

126   

7   
 

 

 Save 9 bytes

 on 3

 pointers.

Lose 4 bytes on

term lengths.
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Net

Example for block size k = 4

Where we used 3 bytes/pointer without blocking
 3 x 4 = 12 bytes,

now we use 3 + 4 = 7 bytes.
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Shaved another ~0.5MB. This reduces the size of the 
dictionary from 7.6 MB to 7.1 MB.
We can save more with larger k.

Why not go with larger k?
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Exercise

Estimate the space usage (and savings compared to 7.6 MB) 
with blocking, for block sizes of k = 4, 8 and 16.
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Dictionary search without blocking

Assuming each dictionary 
term equally likely in query 
(not really so in practice!), 
average number of 
comparisons = 
(1+2∙2+4∙3+4)/8 ≈2.6

- Information Retrieval  - 05 Index Compression 27

Exercise: what if the frequencies of qu
ery terms were non-uniform but kno
wn, how would you structure the dicti
onary search tree?
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Dictionary search with blocking

Binary search down to 4-term block;
 Then linear search through terms in block.

Blocks of 4 (binary tree), avg. = (1+2∙2+2∙3+2∙4+5)/8 = 3 
compares
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Exercise

Estimate the impact on search performance (and slowdown 
compared to k=1) with blocking, for block sizes of k = 4, 8 and
16.
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Front coding

Front-coding:
 Sorted words commonly have long common prefix – store differences 

only

 (for last k-1 in a block of k)

8automata8automate9automatic10automation
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8automat*a1e2ic3ion

Encodes automat Extra length
beyond automat.

Begins to resemble general string compression.



suanlab

RCV1 dictionary compression summary
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Technique Size in MB

Fixed width 11.2

Dictionary-as-String with pointers to every term 7.6

Also, blocking k = 4 7.1

Also, Blocking + front coding 5.9
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Postings Compression
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Postings compression

The postings file is much larger than the dictionary, factor of at 
least 10.

Key desideratum: store each posting compactly.

A posting for our purposes is a docID.

For Reuters (800,000 documents), we would use 32 bits per 
docID when using 4-byte integers.

Alternatively, we can use log2 800,000 ≈ 20 bits per docID.

Our goal: use far fewer than 20 bits per docID.
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Postings: two conflicting forces

A term like arachnocentric occurs in maybe one doc out of a 
million – we would like to store this posting using log2 1M ~ 20 
bits.

A term like the occurs in virtually every doc, so 20 bits/posting 
is too expensive.
 Prefer 0/1 bitmap vector in this case 
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Postings file entry

We store the list of docs containing a term in increasing order of 
docID.
 computer: 33,47,154,159,202 …

Consequence: it suffices to store gaps.
 33,14,107,5,43 …

Hope: most gaps can be encoded/stored with far fewer than 20 
bits.
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Three postings entries

- Information Retrieval  - 05 Index Compression 36



suanlab

Variable length encoding

Aim:
 For arachnocentric, we will use ~20 bits/gap entry.

 For the, we will use ~1 bit/gap entry.

 If the average gap for a term is G, we want to use ~log2G
bits/gap entry.

Key challenge: encode every integer (gap) with about as few 
bits as needed for that integer.

This requires a variable length encoding

Variable length codes achieve this by using short codes for small 
numbers

- Information Retrieval  - 05 Index Compression 37



suanlab

Variable Byte (VB) codes

For a gap value G, we want to use close to the fewest bytes 
needed to hold log2 G bits

Begin with one byte to store G and dedicate 1 bit in it to be a 
continuation bit c

 If G ≤127, binary-encode it in the 7 available bits and set c =1

Else encode G’s lower-order 7 bits and then use additional bytes 
to encode the higher order bits using the same algorithm

At the end set the continuation bit of the last byte to 1 (c =1) 
and for the other bytes c = 0

- Information Retrieval  - 05 Index Compression 38



suanlab

Example
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docIDs 824 829 215406

gaps 5 214577

VB code 00000110 

10111000 

10000101 00001101 

00001100 

10110001

Postings stored as the byte concatenation
000001101011100010000101000011010000110010110001

Key property: VB-encoded postings are
uniquely prefix-decodable.

For a small gap (5), VB
uses a whole byte.
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Other variable unit codes

 Instead of bytes, we can also use a different “unit of alignment”: 32 
bits (words), 16 bits, 4 bits (nibbles).

Variable byte alignment wastes space if you have many small gaps –
nibbles do better in such cases.

Variable byte codes:
 Used by many commercial/research systems

 Good low-tech blend of variable-length coding and sensitivity to computer 
memory alignment matches (vs. bit-level codes, which we look at next).

There is also recent work on word-aligned codes that pack a 
variable number of gaps into one word
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Unary code

Represent n as n 1s with a final 0.

Unary code for 3 is 1110.

Unary code for 40 is

11111111111111111111111111111111111111110 .

Unary code for 80 is:

11111111111111111111111111111111111111111111111111
1111111111111111111111111111110

This doesn’t look promising, but….
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Gamma codes

We can compress better with bit-level codes
 The Gamma code is the best known of these.

Represent a gap G as a pair length and offset

offset is G in binary, with the leading bit cut off
 For example 13 → 1101 → 101

 length is the length of offset
 For 13 (offset 101), this is 3.

We encode length with unary code: 1110.

Gamma code of 13 is the concatenation of length and offset: 
1110101
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Gamma code examples

number length offset g-code

0 none

1 0 0

2 10 0 10,0

3 10 1 10,1

4 110 00 110,00

9 1110 001 1110,001

13 1110 101 1110,101

24 11110 1000 11110,1000

511 111111110 11111111 111111110,11111111

1025 11111111110 0000000001 11111111110,0000000001
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Gamma code properties

G is encoded using 2 log2 G + 1 bits
 Length of offset is log2 G bits

 Length of length is log2 G + 1 bits

All gamma codes have an odd number of bits

Almost within a factor of 2 of best possible, log2 G

Gamma code is uniquely prefix-decodable, like VB

Gamma code can be used for any distribution

Gamma code is parameter-free
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Gamma seldom used in practice

Machines have word boundaries – 8, 16, 32, 64 bits
Operations that cross word boundaries are slower

Compressing and manipulating at the granularity of bits can be 
slow

Variable byte encoding is aligned and thus potentially more 
efficient

Regardless of efficiency, variable byte is conceptually simpler at 
little additional space cost

- Information Retrieval  - 05 Index Compression 45



suanlab

RCV1 compression

Data structure Size in MB

dictionary, fixed-width 11.2

dictionary, term pointers into string 7.6

with blocking, k = 4 7.1

with blocking & front coding 5.9

collection (text, xml markup etc) 3,600.0

collection (text) 960.0

Term-doc incidence matrix 40,000.0

postings, uncompressed (32-bit words) 400.0

postings, uncompressed (20 bits) 250.0

postings, variable byte encoded 116.0

postings, g-encoded 101.0
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Index compression summary

We can now create an index for highly efficient Boolean 
retrieval that is very space efficient

Only 4% of the total size of the collection

Only 10-15% of the total size of the text in the collection

However, we’ve ignored positional information

Hence, space savings are less for indexes used in practice
 But techniques substantially the same.
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Resources for today’s lecture

 IIR 5

MG 3.3, 3.4.

F. Scholer, H.E. Williams and J. Zobel. 2002. Compression of 
Inverted Indexes For Fast Query Evaluation. Proc. ACM-SIGIR 
2002.
 Variable byte codes

V. N. Anh and A. Moffat. 2005. Inverted Index Compression 
Using Word-Aligned Binary Codes. Information Retrieval 8: 151–
166.  
Word aligned codes
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