
suanlab

Information Retrieval

Suan Lee

- Information Retrieval - 05 Index Compression 1

suanlab

05 Index Compression

- Information Retrieval - 05 Index Compression 2

suanlab

Last lecture – index construction

Sort-based indexing
 Naïve in-memory inversion

 Blocked Sort-Based Indexing
 Merge sort is effective for disk-based sorting (avoid seeks!)

Single-Pass In-Memory Indexing
 No global dictionary

 Generate separate dictionary for each block

 Don’t sort postings
 Accumulate postings in postings lists as they occur

Distributed indexing using MapReduce

Dynamic indexing: Multiple indices, logarithmic merge

- Information Retrieval - 05 Index Compression 3

suanlab

Today

Collection statistics in more detail (with RCV1)
 How big will the dictionary and postings be?

Dictionary compression

Postings compression

- Information Retrieval - 05 Index Compression 4

suanlab

Why compression (in general)?

Use less disk space
 Saves a little money

Keep more stuff in memory
 Increases speed

 Increase speed of data transfer from disk to memory
 [read compressed data | decompress] is faster than

[read uncompressed data]

 Premise: Decompression algorithms are fast
 True of the decompression algorithms we use

- Information Retrieval - 05 Index Compression 5

suanlab

Why compression for inverted indexes?

 Dictionary

Make it small enough to keep in main memory

Make it so small that you can keep some postings lists in main
memory too

 Postings file(s)

Reduce disk space needed

Decrease time needed to read postings lists from disk

 Large search engines keep a significant part of the postings in memory.
 Compression lets you keep more in memory

 We will devise various IR-specific compression schemes

- Information Retrieval - 05 Index Compression 6

suanlab

Recall Reuters RCV1

symbol statistic value

N documents 800,000

L avg. # tokens per doc 200

M terms (= word types) 400,000

avg. # bytes per token
(incl. spaces/punct.)

6

avg. # bytes per token
(without spaces/punct.)

4.5

avg. # bytes per term 7.5

non-positional postings 100,000,000

- Information Retrieval - 05 Index Compression 7

suanlab

Index parameters vs. what we index

- Information Retrieval - 05 Index Compression 8

size of word types (terms) non-positional
postings

positional postings

dictionary non-positional index positional index

number ∆% T% number ∆% T% number ∆% T%

Unfiltered 484,494 109,971,179 197,879,290

No numbers 473,723 -2 -2 100,680,242 -8 -8 179,158,204 -9 -9

Case folding 391,523 -17 -19 96,969,056 -3 -12 179,158,204 0 -9

30 stopwords 391,493 -0 -19 83,390,443 -14 -24 121,857,825 -31 -38

150 stopwords 391,373 -0 -19 67,001,847 -30 -39 94,516,599 -47 -52

stemming 322,383 -17 -33 63,812,300 -4 -42 94,516,599 0 -52

Exercise: give intuitions for all the ‘0’ entries. Why do some zero entries correspond to big
deltas in other columns?

"∆%" indicates the reduction in size from the previous line.
”T%” is the cumulative (``total'') reduction from unfiltered.

suanlab

Lossless vs. lossy compression

Lossless compression: All information is preserved.
What we mostly do in IR.

Lossy compression: Discard some information

Several of the preprocessing steps can be viewed as lossy
compression: case folding, stop words, stemming, number
elimination.

Chap/Lecture 7: Prune postings entries that are unlikely to turn
up in the top k list for any query.
Almost no loss quality for top k list.

- Information Retrieval - 05 Index Compression 9

suanlab

Vocabulary vs. collection size

How big is the term vocabulary?
 That is, how many distinct words are there?

Can we assume an upper bound?
Not really: At least 7020 = 1037 different words of length 20

 In practice, the vocabulary will keep growing with the collection
size
 Especially with Unicode 

- Information Retrieval - 05 Index Compression 10

suanlab

Vocabulary vs. collection size

Heaps’ law: M = kTb

M is the size of the vocabulary, T is the number of tokens in the
collection

Typical values: 30 ≤ k ≤ 100 and b ≈ 0.5

 In a log-log plot of vocabulary size M vs. T, Heaps’ law predicts a
line with slope about ½
 It is the simplest possible relationship between the two in log-log

space

An empirical finding (“empirical law”)

- Information Retrieval - 05 Index Compression 11

suanlab

Heaps’ Law

 For RCV1, the dashed line

 log10M = 0.49 log10T + 1.64 is the
best least squares fit.

 Thus, M = 101.64T0.49 so k = 101.64 ≈
44 and b = 0.49.

 Good empirical fit for Reuters
RCV1 !

 For first 1,000,020 tokens,

 law predicts 38,323 terms;

 actually, 38,365 terms

- Information Retrieval - 05 Index Compression 12

suanlab

Exercises

What is the effect of including spelling errors, vs. automatically
correcting spelling errors on Heaps’ law?

Compute the vocabulary size M for this scenario:
 Looking at a collection of web pages, you find that there are 3000

different terms in the first 10,000 tokens and 30,000 different terms
in the first 1,000,000 tokens.

Assume a search engine indexes a total of 20,000,000,000 (2 × 1010)
pages, containing 200 tokens on average

What is the size of the vocabulary of the indexed collection as
predicted by Heaps’ law?

- Information Retrieval - 05 Index Compression 13

suanlab

Zipf’s law

Heaps’ law gives the vocabulary size in collections.

We also study the relative frequencies of terms.

 In natural language, there are a few very frequent terms and
very many very rare terms.

Zipf’s law: The ith most frequent term has frequency
proportional to 1/i .

cfi∝ 1/i = K/i where K is a normalizing constant

cfi is collection frequency: the number of occurrences of the
term ti in the collection.

- Information Retrieval - 05 Index Compression 14

suanlab

Zipf consequences

 If the most frequent term (the) occurs cf1 times
 then the second most frequent term (of) occurs cf1/2 times

 the third most frequent term (and) occurs cf1/3 times …

Equivalent: cfi = K/i where K is a normalizing factor, so
 log cfi = log K - log i

 Linear relationship between log cfi and log i

Another power law relationship

- Information Retrieval - 05 Index Compression 15

suanlab

Zipf’s law for Reuters RCV1

- Information Retrieval - 05 Index Compression 16

suanlab

Compression

Now, we will consider compressing the space for the dictionary
and postings

Basic Boolean index only

No study of positional indexes, etc.

We will consider compression schemes

- Information Retrieval - 05 Index Compression 17

suanlab

Dictionary Compression

- Information Retrieval - 05 Index Compression 18

suanlab

Why compress the dictionary?

Search begins with the dictionary

We want to keep it in memory

Memory footprint competition with other applications

Embedded/mobile devices may have very little memory

Even if the dictionary isn’t in memory, we want it to be small for
a fast search startup time

So, compressing the dictionary is important

- Information Retrieval - 05 Index Compression 19

suanlab

Dictionary storage - first cut

Array of fixed-width entries
~400,000 terms; 28 bytes/term = 11.2 MB.

- Information Retrieval - 05 Index Compression 20

Terms Freq. Postings ptr.

a 656,265

aachen 65

…. ….

zulu 221

Dictionary search

structure

20 bytes 4 bytes each

suanlab

Fixed-width terms are wasteful

Most of the bytes in the Term column are wasted – we allot 20
bytes for 1 letter terms.
 And we still can’t handle supercalifragilisticexpialidocious or hydrochlorofluorocarbons.

Written English averages ~4.5 characters/word.
 Exercise: Why is/isn’t this the number to use for estimating the

dictionary size?

Ave. dictionary word in English: ~8 characters
How do we use ~8 characters per dictionary term?

Short words dominate token counts but not type average.

- Information Retrieval - 05 Index Compression 21

suanlab

Compressing the term list: Dictionary-as-a-String

Store dictionary as a (long) string of characters:
 Pointer to next word shows end of current word

Hope to save up to 60% of dictionary space.

- Information Retrieval - 05 Index Compression 22

….systilesyzygeticsyzygialsyzygyszaibelyiteszczecinszomo….

Freq. Postings ptr. Term ptr.

33

29

44

126

Total string length =

400K x 8B = 3.2MB

Pointers resolve 3.2M

positions: log23.2M =

22bits = 3bytes

suanlab

Space for dictionary as a string

4 bytes per term for Freq.

4 bytes per term for pointer to Postings.

3 bytes per term pointer

Avg. 8 bytes per term in term string

400K terms x 19  7.6 MB (against 11.2MB for fixed width)

- Information Retrieval - 05 Index Compression 23

 Now avg. 11
 bytes/term,
 not 20.

suanlab

Blocking

Store pointers to every kth term string.
 Example below: k=4.

Need to store term lengths (1 extra byte)

- Information Retrieval - 05 Index Compression 24

….7systile9syzygetic8syzygial6syzygy11szaibelyite8szczecin9szomo….

Freq. Postings ptr. Term ptr.

33

29

44

126

7

 Save 9 bytes

 on 3

 pointers.

Lose 4 bytes on

term lengths.

suanlab

Net

Example for block size k = 4

Where we used 3 bytes/pointer without blocking
 3 x 4 = 12 bytes,

now we use 3 + 4 = 7 bytes.

- Information Retrieval - 05 Index Compression 25

Shaved another ~0.5MB. This reduces the size of the
dictionary from 7.6 MB to 7.1 MB.
We can save more with larger k.

Why not go with larger k?

suanlab

Exercise

Estimate the space usage (and savings compared to 7.6 MB)
with blocking, for block sizes of k = 4, 8 and 16.

- Information Retrieval - 05 Index Compression 26

suanlab

Dictionary search without blocking

Assuming each dictionary
term equally likely in query
(not really so in practice!),
average number of
comparisons =
(1+2∙2+4∙3+4)/8 ≈2.6

- Information Retrieval - 05 Index Compression 27

Exercise: what if the frequencies of qu
ery terms were non-uniform but kno
wn, how would you structure the dicti
onary search tree?

suanlab

Dictionary search with blocking

Binary search down to 4-term block;
 Then linear search through terms in block.

Blocks of 4 (binary tree), avg. = (1+2∙2+2∙3+2∙4+5)/8 = 3
compares

- Information Retrieval - 05 Index Compression 28

suanlab

Exercise

Estimate the impact on search performance (and slowdown
compared to k=1) with blocking, for block sizes of k = 4, 8 and
16.

- Information Retrieval - 05 Index Compression 29

suanlab

Front coding

Front-coding:
 Sorted words commonly have long common prefix – store differences

only

 (for last k-1 in a block of k)

8automata8automate9automatic10automation

- Information Retrieval - 05 Index Compression 30

8automat*a1e2ic3ion

Encodes automat Extra length
beyond automat.

Begins to resemble general string compression.

suanlab

RCV1 dictionary compression summary

- Information Retrieval - 05 Index Compression 31

Technique Size in MB

Fixed width 11.2

Dictionary-as-String with pointers to every term 7.6

Also, blocking k = 4 7.1

Also, Blocking + front coding 5.9

suanlab

Postings Compression

- Information Retrieval - 05 Index Compression 32

suanlab

Postings compression

The postings file is much larger than the dictionary, factor of at
least 10.

Key desideratum: store each posting compactly.

A posting for our purposes is a docID.

For Reuters (800,000 documents), we would use 32 bits per
docID when using 4-byte integers.

Alternatively, we can use log2 800,000 ≈ 20 bits per docID.

Our goal: use far fewer than 20 bits per docID.

- Information Retrieval - 05 Index Compression 33

suanlab

Postings: two conflicting forces

A term like arachnocentric occurs in maybe one doc out of a
million – we would like to store this posting using log2 1M ~ 20
bits.

A term like the occurs in virtually every doc, so 20 bits/posting
is too expensive.
 Prefer 0/1 bitmap vector in this case

- Information Retrieval - 05 Index Compression 34

suanlab

Postings file entry

We store the list of docs containing a term in increasing order of
docID.
 computer: 33,47,154,159,202 …

Consequence: it suffices to store gaps.
 33,14,107,5,43 …

Hope: most gaps can be encoded/stored with far fewer than 20
bits.

- Information Retrieval - 05 Index Compression 35

suanlab

Three postings entries

- Information Retrieval - 05 Index Compression 36

suanlab

Variable length encoding

Aim:
 For arachnocentric, we will use ~20 bits/gap entry.

 For the, we will use ~1 bit/gap entry.

 If the average gap for a term is G, we want to use ~log2G
bits/gap entry.

Key challenge: encode every integer (gap) with about as few
bits as needed for that integer.

This requires a variable length encoding

Variable length codes achieve this by using short codes for small
numbers

- Information Retrieval - 05 Index Compression 37

suanlab

Variable Byte (VB) codes

For a gap value G, we want to use close to the fewest bytes
needed to hold log2 G bits

Begin with one byte to store G and dedicate 1 bit in it to be a
continuation bit c

 If G ≤127, binary-encode it in the 7 available bits and set c =1

Else encode G’s lower-order 7 bits and then use additional bytes
to encode the higher order bits using the same algorithm

At the end set the continuation bit of the last byte to 1 (c =1)
and for the other bytes c = 0

- Information Retrieval - 05 Index Compression 38

suanlab

Example

- Information Retrieval - 05 Index Compression 39

docIDs 824 829 215406

gaps 5 214577

VB code 00000110

10111000

10000101 00001101

00001100

10110001

Postings stored as the byte concatenation
000001101011100010000101000011010000110010110001

Key property: VB-encoded postings are
uniquely prefix-decodable.

For a small gap (5), VB
uses a whole byte.

suanlab

Other variable unit codes

 Instead of bytes, we can also use a different “unit of alignment”: 32
bits (words), 16 bits, 4 bits (nibbles).

Variable byte alignment wastes space if you have many small gaps –
nibbles do better in such cases.

Variable byte codes:
 Used by many commercial/research systems

 Good low-tech blend of variable-length coding and sensitivity to computer
memory alignment matches (vs. bit-level codes, which we look at next).

There is also recent work on word-aligned codes that pack a
variable number of gaps into one word

- Information Retrieval - 05 Index Compression 40

suanlab

Unary code

Represent n as n 1s with a final 0.

Unary code for 3 is 1110.

Unary code for 40 is

110 .

Unary code for 80 is:

11
1111111111111111111111111111110

This doesn’t look promising, but….

- Information Retrieval - 05 Index Compression 41

suanlab

Gamma codes

We can compress better with bit-level codes
 The Gamma code is the best known of these.

Represent a gap G as a pair length and offset

offset is G in binary, with the leading bit cut off
 For example 13 → 1101 → 101

 length is the length of offset
 For 13 (offset 101), this is 3.

We encode length with unary code: 1110.

Gamma code of 13 is the concatenation of length and offset:
1110101

- Information Retrieval - 05 Index Compression 42

suanlab

Gamma code examples

number length offset g-code

0 none

1 0 0

2 10 0 10,0

3 10 1 10,1

4 110 00 110,00

9 1110 001 1110,001

13 1110 101 1110,101

24 11110 1000 11110,1000

511 111111110 11111111 111111110,11111111

1025 11111111110 0000000001 11111111110,0000000001

- Information Retrieval - 05 Index Compression 43

suanlab

Gamma code properties

G is encoded using 2 log2 G + 1 bits
 Length of offset is log2 G bits

 Length of length is log2 G + 1 bits

All gamma codes have an odd number of bits

Almost within a factor of 2 of best possible, log2 G

Gamma code is uniquely prefix-decodable, like VB

Gamma code can be used for any distribution

Gamma code is parameter-free

- Information Retrieval - 05 Index Compression 44

suanlab

Gamma seldom used in practice

Machines have word boundaries – 8, 16, 32, 64 bits
Operations that cross word boundaries are slower

Compressing and manipulating at the granularity of bits can be
slow

Variable byte encoding is aligned and thus potentially more
efficient

Regardless of efficiency, variable byte is conceptually simpler at
little additional space cost

- Information Retrieval - 05 Index Compression 45

suanlab

RCV1 compression

Data structure Size in MB

dictionary, fixed-width 11.2

dictionary, term pointers into string 7.6

with blocking, k = 4 7.1

with blocking & front coding 5.9

collection (text, xml markup etc) 3,600.0

collection (text) 960.0

Term-doc incidence matrix 40,000.0

postings, uncompressed (32-bit words) 400.0

postings, uncompressed (20 bits) 250.0

postings, variable byte encoded 116.0

postings, g-encoded 101.0

- Information Retrieval - 05 Index Compression 46

suanlab

Index compression summary

We can now create an index for highly efficient Boolean
retrieval that is very space efficient

Only 4% of the total size of the collection

Only 10-15% of the total size of the text in the collection

However, we’ve ignored positional information

Hence, space savings are less for indexes used in practice
 But techniques substantially the same.

- Information Retrieval - 05 Index Compression 47

suanlab

Resources for today’s lecture

 IIR 5

MG 3.3, 3.4.

F. Scholer, H.E. Williams and J. Zobel. 2002. Compression of
Inverted Indexes For Fast Query Evaluation. Proc. ACM-SIGIR
2002.
 Variable byte codes

V. N. Anh and A. Moffat. 2005. Inverted Index Compression
Using Word-Aligned Binary Codes. Information Retrieval 8: 151–
166.
Word aligned codes

- Information Retrieval - 05 Index Compression 48

