
suanlab

Information Retrieval

Suan Lee

- Information Retrieval - 04 Index Construction 1

suanlab

04 Index Construction

- Information Retrieval - 04 Index Construction 2

suanlab

Plan

Last lecture:
 Dictionary data structures

 Tolerant retrieval
 Wildcards

 Spell correction

 Soundex

This time:
 Index construction

- Information Retrieval - 04 Index Construction 3

a-hu
hy-m

n-z

mo

on

among

$m mace

abandon

amortize

madden

among

suanlab

Index construction

How do we construct an index?

What strategies can we use with limited main memory?

- Information Retrieval - 04 Index Construction 4

suanlab

Hardware basics

Many design decisions in information retrieval are based on the
characteristics of hardware

We begin by reviewing hardware basics

- Information Retrieval - 04 Index Construction 5

suanlab

Hardware basics

Access to data in memory is much faster than access to data on
disk.

Disk seeks: No data is transferred from disk while the disk head
is being positioned.

Therefore: Transferring one large chunk of data from disk to
memory is faster than transferring many small chunks.

Disk I/O is block-based: Reading and writing of entire blocks (as
opposed to smaller chunks).

Block sizes: 8KB to 256 KB.

- Information Retrieval - 04 Index Construction 6

suanlab

Hardware basics

Servers used in IR systems now typically have several GB of
main memory, sometimes tens of GB.

Available disk space is several (2–3) orders of magnitude larger.

Fault tolerance is very expensive: It’s much cheaper to use many
regular machines rather than one fault tolerant machine.

- Information Retrieval - 04 Index Construction 7

suanlab

Hardware assumptions for this lecture

symbol statistic value

s average seek time 5 ms = 5 x 10−3 s

b transfer time per byte 0.02 μs = 2 x 10−8 s

processor’s clock rate 109 s−1

p low-level operation
(e.g., compare & swap a word)

0.01 μs = 10−8 s

size of main memory several GB

size of disk space 1TB or more

- Information Retrieval - 04 Index Construction 8

suanlab

RCV1: Our collection for this lecture

Shakespeare’s collected works definitely aren’t large enough for
demonstrating many of the points in this course.

The collection we’ll use isn’t really large enough either, but it’s
publicly available and is at least a more plausible example.

As an example for applying scalable index construction
algorithms, we will use the Reuters RCV1 collection.

This is one year of Reuters newswire (part of 1995 and 1996)

- Information Retrieval - 04 Index Construction 9

suanlab

A Reuters RCV1 document

- Information Retrieval - 04 Index Construction 10

suanlab

Reuters RCV1 statistics

symbol statistic value

N documents 800,000

L avg. # tokens per doc 200

M terms (= word types) 400,000

avg. # bytes per token
(incl. spaces/punct.)

6

avg. # bytes per token
(without spaces/punct.)

4.5

avg. # bytes per term 7.5

non-positional postings 100,000,000

- Information Retrieval - 04 Index Construction 11

suanlab

Recall index construction

Documents are parsed to
extract words and these are
saved with the Document ID.

- Information Retrieval - 04 Index Construction 12

I did enact Julius

Caesar I was killed

i' the Capitol;

Brutus killed me.

Doc 1

So let it be with

Caesar. The noble

Brutus hath told you

Caesar was ambitious

Doc 2

Term Doc #

I 1

did 1

enact 1

julius 1

caesar 1

I 1

was 1

killed 1

i' 1

the 1

capitol 1

brutus 1

killed 1

me 1

so 2

let 2

it 2

be 2

with 2

caesar 2

the 2

noble 2

brutus 2

hath 2

told 2

you 2

caesar 2

was 2

ambitious 2

suanlab

Key step

After all documents have been
parsed, the inverted file is
sorted by terms.

- Information Retrieval - 04 Index Construction 13

We focus on this sort step.
We have 100M items to sort.

Term Doc #

I 1

did 1

enact 1

julius 1

caesar 1

I 1

was 1

killed 1

i' 1

the 1

capitol 1

brutus 1

killed 1

me 1

so 2

let 2

it 2

be 2

with 2

caesar 2

the 2

noble 2

brutus 2

hath 2

told 2

you 2

caesar 2

was 2

ambitious 2

Term Doc #

ambitious 2

be 2

brutus 1

brutus 2

capitol 1

caesar 1

caesar 2

caesar 2

did 1

enact 1

hath 1

I 1

I 1

i' 1

it 2

julius 1

killed 1

killed 1

let 2

me 1

noble 2

so 2

the 1

the 2

told 2

you 2

was 1

was 2

with 2

suanlab

Scaling index construction

 In-memory index construction does not scale
 Can’t stuff entire collection into memory, sort, then write back

How can we construct an index for very large collections?

Taking into account the hardware constraints we just learned
about . . .

Memory, disk, speed, etc.

- Information Retrieval - 04 Index Construction 14

suanlab

Sort-based index construction

 As we build the index, we parse docs one at a time.

 While building the index, we cannot easily exploit compression tricks
(you can, but much more complex)

 The final postings for any term are incomplete until the end.

 At 12 bytes per non-positional postings entry (term, doc, freq), demands a lot of space
for large collections.

 T = 100,000,000 in the case of RCV1

 So … we can do this in memory in 2009, but typical collections are
much larger. E.g., the New York Times provides an index of >150 years
of newswire

 Thus: We need to store intermediate results on disk.

- Information Retrieval - 04 Index Construction 15

suanlab

Sort using disk as “memory”?

Can we use the same index construction algorithm for larger
collections, but by using disk instead of memory?

No: Sorting T = 100,000,000 records on disk is too slow – too
many disk seeks.

We need an external sorting algorithm.

- Information Retrieval - 04 Index Construction 16

suanlab

Bottleneck

Parse and build postings entries one doc at a time

Now sort postings entries by term (then by doc within each
term)

Doing this with random disk seeks would be too slow – must
sort T=100M records

- Information Retrieval - 04 Index Construction 17

If every comparison took 2 disk seeks, and N items could be

sorted with N log2N comparisons, how long would this take?

suanlab

BSBI: Blocked sort-based Indexing
(Sorting with fewer disk seeks)

12-byte (4+4+4) records (term, doc, freq).

These are generated as we parse docs.

Must now sort 100M such 12-byte records by term.

Define a Block ~ 10M such records
 Can easily fit a couple into memory.

 Will have 10 such blocks to start with.

Basic idea of algorithm:
 Accumulate postings for each block, sort, write to disk.

 Then merge the blocks into one long sorted order.

- Information Retrieval - 04 Index Construction 18

suanlab - Information Retrieval - 04 Index Construction 19

suanlab

Sorting 10 blocks of 10M records

First, read each block and sort within:
 Quicksort takes 2N ln N expected steps

 In our case 2 x (10M ln 10M) steps

Exercise: estimate total time to read each block from disk and
quicksort it.

10 times this estimate – gives us 10 sorted runs of 10M records
each.

Done straightforwardly, need 2 copies of data on disk
 But can optimize this

- Information Retrieval - 04 Index Construction 20

suanlab

BSBIndexConstruction

- Information Retrieval - 04 Index Construction 21

suanlab

How to merge the sorted runs?

Can do binary merges, with a merge tree of log210 = 4 layers.

During each layer, read into memory runs in blocks of 10M,
merge, write back.

- Information Retrieval - 04 Index Construction 22

Disk

1

3 4

2
2

1

4

3

Runs being
merged.

Merged run.

suanlab

How to merge the sorted runs?

But it is more efficient to do a multi-way merge, where you are
reading from all blocks simultaneously

Providing you read decent-sized chunks of each block into
memory and then write out a decent-sized output chunk, then
you’re not killed by disk seeks

- Information Retrieval - 04 Index Construction 23

suanlab

Remaining problem with sort-based algorithm

Our assumption was: we can keep the dictionary in memory.

We need the dictionary (which grows dynamically) in order to
implement a term to termID mapping.

Actually, we could work with term,docID postings instead of
termID,docID postings . . .

 . . . but then intermediate files become very large. (We would
end up with a scalable, but very slow index construction
method.)

- Information Retrieval - 04 Index Construction 24

suanlab

SPIMI: Single-pass in-memory indexing

Key idea 1: Generate separate dictionaries for each block – no
need to maintain term-termID mapping across blocks.

Key idea 2: Don’t sort. Accumulate postings in postings lists as
they occur.

With these two ideas we can generate a complete inverted index
for each block.

These separate indexes can then be merged into one big index.

- Information Retrieval - 04 Index Construction 25

suanlab

SPIMI-Invert

- Information Retrieval - 04 Index Construction 26

Merging of blocks is analogous to BSBI.

suanlab

SPIMI: Compression

Compression makes SPIMI even more efficient.
 Compression of terms

 Compression of postings

See next lecture

- Information Retrieval - 04 Index Construction 27

suanlab

Distributed indexing

For web-scale indexing (don’t try this at home!):
must use a distributed computing cluster

 Individual machines are fault-prone
 Can unpredictably slow down or fail

How do we exploit such a pool of machines?

- Information Retrieval - 04 Index Construction 28

suanlab

Web search engine data centers

Web search data centers (Google, Bing, Baidu) mainly contain
commodity machines.

Data centers are distributed around the world.

Estimate: Google ~1 million servers, 3 million processors/cores
(Gartner 2007)

Google installs 100,000 servers each quarter.

Based on expenditures of 200–250 million dollars per year

This would be 10% of the computing capacity of the world!

- Information Retrieval - 04 Index Construction 29

suanlab

Distributed indexing

Maintain a master machine directing the indexing job –
considered “safe”.

Break up indexing into sets of (parallel) tasks.

Master machine assigns each task to an idle machine from a
pool.

- Information Retrieval - 04 Index Construction 31

suanlab

Parallel tasks

We will use two sets of parallel tasks
 Parsers

 Inverters

Break the input document collection into splits

Each split is a subset of documents (corresponding to blocks in
BSBI/SPIMI)

- Information Retrieval - 04 Index Construction 32

suanlab

Parsers

Master assigns a split to an idle parser machine

Parser reads a document at a time and emits (term, doc) pairs

Parser writes pairs into j partitions

Each partition is for a range of terms’ first letters
 (e.g., a-f, g-p, q-z) – here j = 3.

Now to complete the index inversion

- Information Retrieval - 04 Index Construction 33

suanlab

Inverters

An inverter collects all (term,doc) pairs (=postings) for one
term-partition.

Sorts and writes to postings lists

- Information Retrieval - 04 Index Construction 34

suanlab

Data flow

- Information Retrieval - 04 Index Construction 35

splits

Parser

Parser

Parser

Master

a-f g-p q-z

a-f g-p q-z

a-f g-p q-z

Inverter

Inverter

Inverter

Postings

a-f

g-p

q-z

assign assign

Map
phase

Segment files Reduce
phase

suanlab

MapReduce

The index construction algorithm we just described is an
instance of MapReduce.

MapReduce (Dean and Ghemawat 2004) is a robust and
conceptually simple framework for distributed computing …

… without having to write code for the distribution part.

They describe the Google indexing system (ca. 2002) as
consisting of a number of phases, each implemented in
MapReduce.

- Information Retrieval - 04 Index Construction 36

suanlab

MapReduce

 Index construction was just one phase.

Another phase: transforming a term-partitioned index into a
document-partitioned index.
 Term-partitioned: one machine handles a subrange of terms

 Document-partitioned: one machine handles a subrange of documents

Most search engines use a document-partitioned index for
better load balancing, etc.

- Information Retrieval - 04 Index Construction 37

suanlab

Schema for index construction in MapReduce

Schema of map and reduce functions

map: input → list(k, v)

reduce: (k, list(v)) → output

Instantiation of the schema for index construction

map: collection → list(termID, docID)

reduce: (<termID1, list(docID)>, <termID2, list(docID)>, …) →
(postings list1, postings list2, …)

- Information Retrieval - 04 Index Construction 38

suanlab

Example for index construction

Map:

 d1 : Caesar came, Caesar conquered.
→ <Caesar, d1>, <came, d1>, <Caesar, d1>, <conquered, d1>

 d2 : Caesar died.
→ <Caesar, d2>, <died, d2>

Reduce:
 (<Caesar, (d1,d2,d1)>, <died, (d2)>, <came, (d1)>, <conquered, (d1)>)

→ (<Caesar, (d1:2,d2:1)>, <died, (d2:1)>, <came, (d1:1)>, <conquered,
(d1:1)>)

- Information Retrieval - 04 Index Construction 39

suanlab

Dynamic indexing

Up to now, we have assumed that collections are static.

They rarely are:
 Documents come in over time and need to be inserted.

 Documents are deleted and modified.

This means that the dictionary and postings lists have to be
modified:
 Postings updates for terms already in dictionary

 New terms added to dictionary

- Information Retrieval - 04 Index Construction 40

suanlab

Simplest approach

Maintain “big” main index

New docs go into “small” auxiliary index

Search across both, merge results

Deletions
 Invalidation bit-vector for deleted docs

 Filter docs output on a search result by this invalidation bit-vector

Periodically, re-index into one main index

- Information Retrieval - 04 Index Construction 41

suanlab

Issues with main and auxiliary indexes

 Problem of frequent merges – you touch stuff a lot

 Poor performance during merge

 Actually:
 Merging of the auxiliary index into the main index is efficient if we keep a separate file for each

postings list.

 Merge is the same as a simple append.

 But then we would need a lot of files – inefficient for OS.

 Assumption for the rest of the lecture: The index is one big file.

 In reality: Use a scheme somewhere in between (e.g., split very large postings lists,
collect postings lists of length 1 in one file etc.)

- Information Retrieval - 04 Index Construction 42

suanlab

Logarithmic merge

Maintain a series of indexes, each twice as large as the previous
one
 At any time, some of these powers of 2 are instantiated

Keep smallest (Z0) in memory

Larger ones (I0, I1, …) on disk

 If Z0 gets too big (> n), write to disk as I0

Or merge with I0 (if I0 already exists) as Z1

Either write merge Z1 to disk as I1 (if no I1)

Or merge with I1 to form Z2

- Information Retrieval - 04 Index Construction 43

suanlab - Information Retrieval - 04 Index Construction 44

suanlab

Logarithmic merge

Auxiliary and main index: index construction time is O(T2) as
each posting is touched in each merge.

Logarithmic merge: Each posting is merged O(log T) times, so
complexity is O(T log T)

So logarithmic merge is much more efficient for index
construction

But query processing now requires the merging of O(log T)
indexes
 Whereas it is O(1) if you just have a main and auxiliary index

- Information Retrieval - 04 Index Construction 45

suanlab

Further issues with multiple indexes

Collection-wide statistics are hard to maintain

E.g., when we spoke of spell-correction: which of several
corrected alternatives do we present to the user?
 We said, pick the one with the most hits

How do we maintain the top ones with multiple indexes and
invalidation bit vectors?
 One possibility: ignore everything but the main index for such

ordering

Will see more such statistics used in results ranking

- Information Retrieval - 04 Index Construction 46

suanlab

Dynamic indexing at search engines

All the large search engines now do dynamic indexing

Their indices have frequent incremental changes
 News items, blogs, new topical web pages, …

But (sometimes/typically) they also periodically reconstruct
the index from scratch
 Query processing is then switched to the new index, and the old index

is deleted

- Information Retrieval - 04 Index Construction 47

suanlab - Information Retrieval - 04 Index Construction 48

suanlab

Other sorts of indexes

Positional indexes
 Same sort of sorting problem … just larger

Building character n-gram indexes:
 As text is parsed, enumerate n-grams.

 For each n-gram, need pointers to all dictionary terms containing it –
the “postings”.

 Note that the same “postings entry” will arise repeatedly in parsing
the docs – need efficient hashing to keep track of this.
 E.g., that the trigram uou occurs in the term deciduous will be discovered on

each text occurrence of deciduous

 Only need to process each term once

- Information Retrieval - 04 Index Construction 49

Why?

suanlab

Resources for today’s lecture

Chapter 4 of IIR

MG Chapter 5

Original publication on MapReduce: Dean and Ghemawat (2004)

Original publication on SPIMI: Heinz and Zobel (2003)

- Information Retrieval - 04 Index Construction 50

