

06 광역 통신망과 고속 광역 통신망

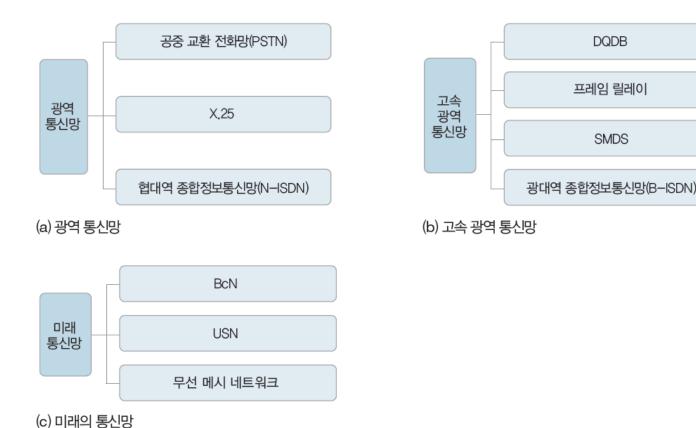
광역 통신망(WAN)

- 도시와 도시 간, 국가와 국가 간 등 원격지 사이를 연결하는 통신망
- 범위는 보통 10km 이상(인공위성을 이용한 패킷 통신은 제외)
- 광역 통신망에서 각 노드를 연결할 때는 점-대-점(Point-to-Point) 접속 방식 사용

고속 광역 통신망

- 광역 통신망에 텍스트, 이미지, 음성 등 모든 형태의 데이터를 디지털로 처리해주는 고속의 정보통신망
- 보통의 해당 지역의 도시와 교외를 포함하여 범위가 수십 km에 이름
- 도시망(MAN)이 고속 광역 통신망에 해당됨
 - MAN은 지리적으로 도시 하나 크기만한 영역에 분산되어 있는 LAN과 컴퓨터, WAN을 연결

광대역 통합 네트워크BcN, Broadband convergence Network


- 통신과 방송, 인터넷 등 각종 서비스를 통합하며, 다양한 응용 서비스를 쉽게 개발할 수 있는 개방형 플랫폼(Open API)에 기반을 둔 차세대 통합 네트워크
- 예) 단말기 하나로 초고속 인터넷과 방송을 즐길 수 있는 서비스 제공
- BcN이라는 용어는 국내에서 주로 사용, 미국에서는 차세대 네트워크 (NGN, Next Generation Network)로 사용

USN(Ubiquitous Sensor Network)

- 센서 네트워크를 이용해 유비쿼터스 환경을 구현하는 것
- 원래는 WSN(Wireless Sensor Network)에서 시작했으나 포괄적 의미로 한국에서 USN이라는 명칭을 제안
- 크게 RFID, WSN 등의 내용을 포함하며, 모든 사물에 적용되는 임베디드 무선 네트워크 기술
- USN 관련 소프트웨어 플랫폼 : TinyOS, Nano Qplus, Contiki, LiteOS 등
- USN 관련 표준 : IETF의 6LowPAN, ROLL, 지그비ZigBee, Wireless HART, ISA 등
- 앞으로 IPv6를 접목한 USN 기술이 많이 확산될 예정

무선 메시 네트워크(Wireless Mesh Network)

- 기존 무선 LAN의 한계를 극복하기 위해 등장
- 주로 차세대 이동통신, 홈 네트워킹, 공공 안전 등 특수 목적 네트워크에 활용

광역 통신망과 고 속 광역 통신망의 프로토콜과 OSI 7 계층의 관계

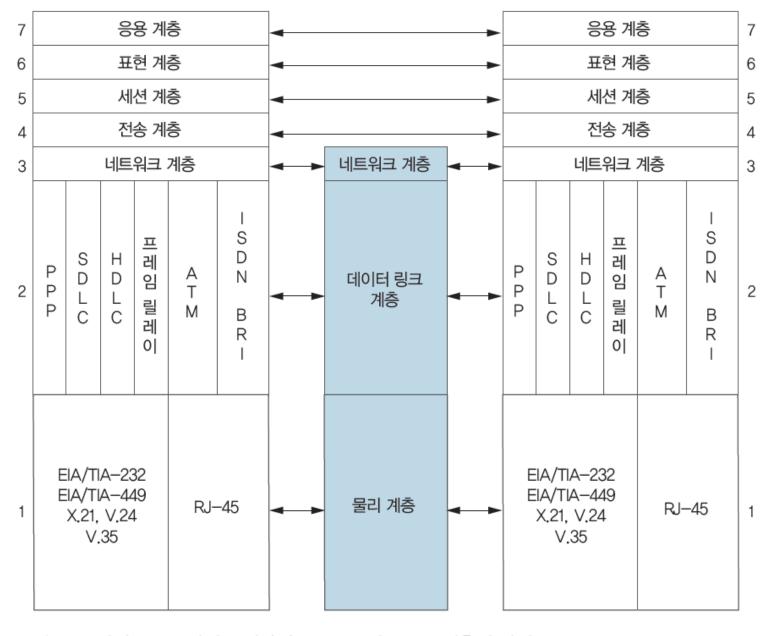
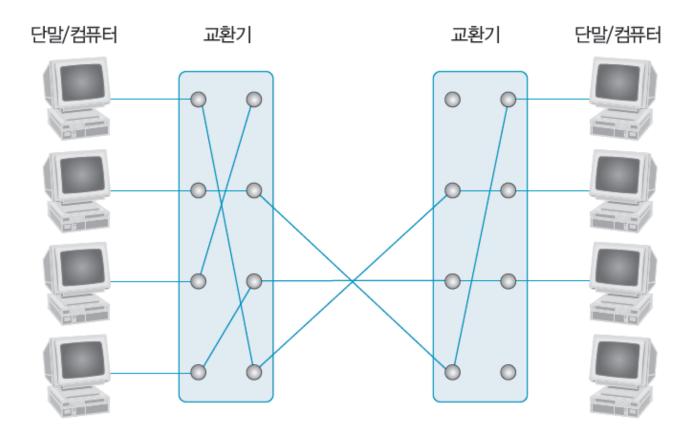


그림 6-2 광역·고속 광역 통신망의 프로토콜과 OSI 7계층의 관계


광역 통신망과 고속 광역 통신망의 교환 방식

- 회선 교환 방식
 - 사용자가 전화망을 이용해 상대방을 호출하여 연결
- 축적 교환 방식
 - 교환기를 이용하여 정보를 메시지나 패킷 단위로 저장하고 전송(실시간 전송에 부적합)
 - 메시지 교환 방식, 패킷 교환 방식, 셀교환 방식으로 나뉨(메시지 교환 방식은 메시지 길이가 매번 변하지만, 패킷 교환이나 셀 교환 방식은 고정되고 규격화되어 있음)

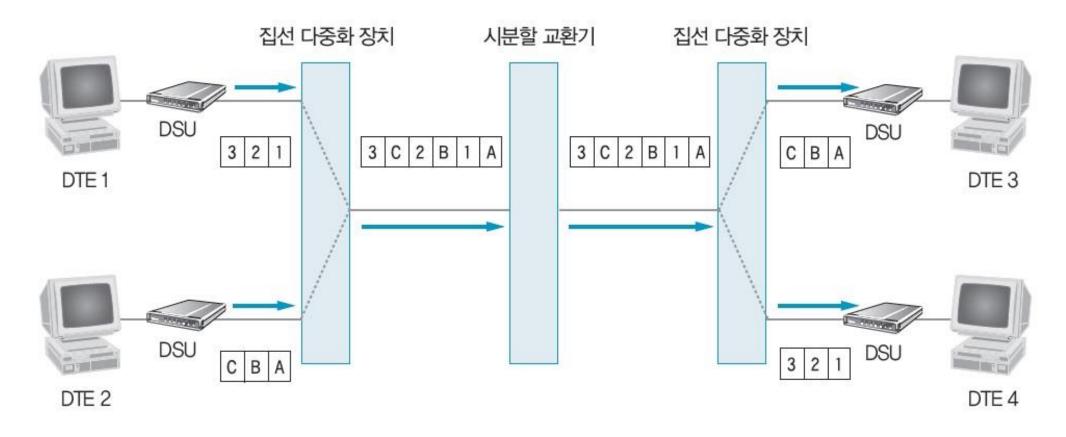
회선 교환(Circuit Switching)의 원리

- 노드와 노드 간에 물리적으로 전용 통신로를 설정하여 데이터를 교환
- 회선 교환 데이터망(CSDN, Circuit Switched Data Network)이라고도 함

회선 교환의 예

- 대표적인 예는 공중 교환 전화망(PSTN)
- 긴 메시지를 전송하는 데 적합하므로 팩스 화상통신, 파일 전송 등에도 사용됨

회선 교환의 특징

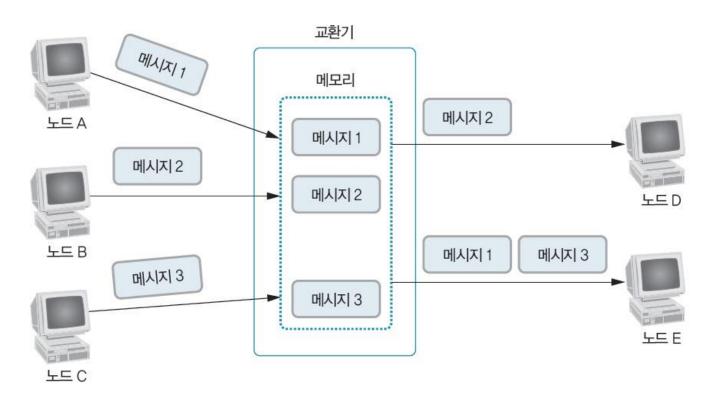

- 회선이 설정되어 통신이 완료될 때까지 회선을 물리적으로 접속시켜 줌 (전용 전송로)
- 데이터 전송에 오버헤드가 없으며, 고정된 대역폭으로 데이터를 전송
- 실시간 대화용에 적합하며, 전송속도나 코드의 변환이 불가능
- 매번 통신할 때마다 다른 회선이 선택되며, 통신 중에는 이미 설정된 회 선을 사용하므로 전송 제어에 쓰일 신호가 필요하지 않음

공간분할 회선 교환(Space Division Switch)

- 기존에 사용하던 기계식, 전자식 교환기와 통신회선을 그대로 이용하는 방식
- 초기의 전화 교환기인 음성용 교환기에서 사용한 방식으로, 크로스바 (Cross Bar)형 스위치 등 기계식이나 전자식 접점을 이용해 교환
- 연결될 때까지 접속하는 시간이 길고, 고속 데이터 통신이 어려움
- 코드나 속도를 변환하기 어려우며, 오류 발생률이 높은 편

시분할 회선 교환

■ 다중 변환 장치인 스위치나 통신로를 시간으로 분할해 공동으로 사용하는 방식

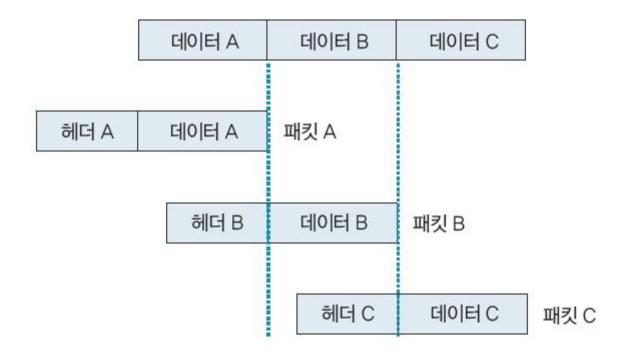


축적 교환(Store and Forward Switching) 방식

- 송신 노드와 수신 노드 사이에 있는 중계 노드에서 수신한 데이터를 일단 메모리에 저장한 후 다음 노드를 선택하여 송신하는 방식
- 실시간 전송 불가능
- 메시지 교환 방식, 패킷 교환 방식, 셀 방식이 있음

메시지 교환의 원리

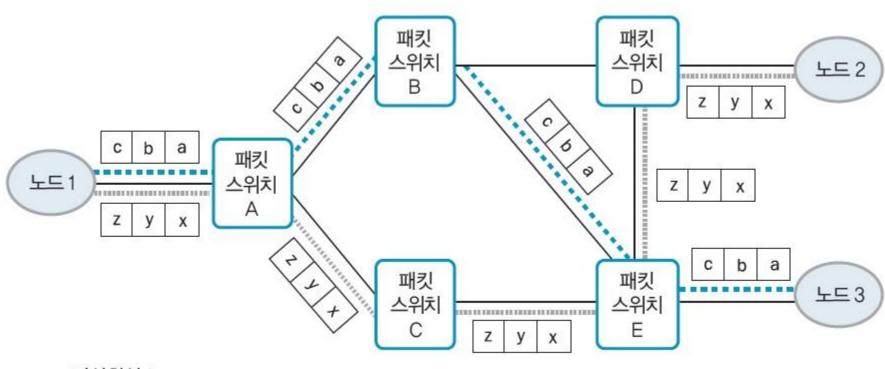
- ① 송신 노드에서 교환기로 데이터를 보내어 교환기의 메모리에 저장한다.
- ② 수신 노드에서 데이터를 요구한다.
- ③ 교환기에 저장된 데이터를 수신 노드로 전송한다.


메시지 교환의 특징

- 전송하는 도중 오류가 발생해도 메모리에 저장된 사본을 재전송할 수 있음(회선 효율성이 높음)
- 전송량이 많은 경우 한 개의 메시지를 여러 목적지로 전송할 수 있음
- 여러 지점을 동시에 전송하는 방송통신 기능과 부가되는 제어 정보로 오류를 제어하고, 코드를 변환하며, 우선순위를 제어하는 등 통신 처리 기능도 있음
- 메시지 길이가 가변적이라 교환기 기억 장치의 사용 효율, 전송 지연, 통 신회선의 이용률 부분이 효율적이지 않음

패킷 교환PSDN, Packet Switched Data Network

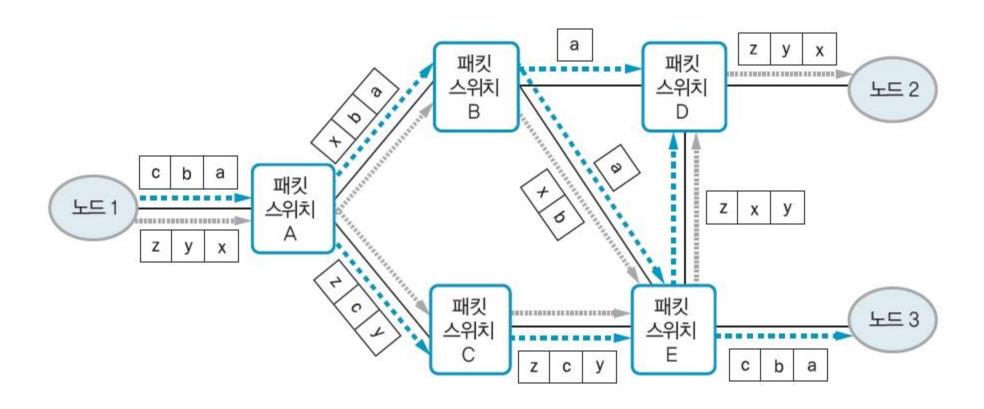
- 데이터를 패킷 형태로 분할하여 전송하고 수신
 - 패킷 : 데이터를 일정한 길이로 분할하여 그 데이터 앞에 헤더(주소 정보, 오류 제 어 정보, 순서 번호 등 포함)를 두는 형태
- PAD(Packet Assembler and Disassembler)기능이 노드나 교환기에 포함 되어 있어야 함
- 패킷 교환기의 메모리에 임시로 저장해 대기하고 있다가 서비스 정보를 검색하면 선택한 출력 링크에서 목적지 노드로 데이터를 전송
- 메시지 교환 전송 방식과 비슷한 축적 교환 방식임


패킷의 형태

가상회선(Virtual Circuit) 방식

- 사용자가 호(Call)를 요청하면 노드 사이를 연결하는 전용 통신로인 가상 회선을 만들어 송신 노드와 수신 노드 간에 데이터를 전달
- 일단 가상회선이 만들어지면 해당 호를 종료하기 전까지 선택한 경로를 따라 패킷이 전송되며, 전송이 끝난 후 가상회선은 종료됨
- 데이터를 전송하면 반드시 목적지에 도착시키기 때문에 연결 지향 서비 스라고도 함

가상회선(Virtual Circuit) 방식


• 가상회선 1: ·······

• 가상회선 2: •••••

데이터그램(Datagram) 방식

- 일련의 데이터를 패킷 단위로 분할해 송신 노드와 수신 노드 간에 데이터 전달
- 패킷 전송에 부하가 생겼는지에 따라 패킷의 경로를 동적으로 설정
- 패킷을 전송하기 전에 가상회선을 먼저 만들지 않아도 되므로 비연결 지향 서 비스에 해당
- 먼저 전송되더라도 최적의 경로를 찾지 못하면 나중에 전송된 데이터보다 늦 게 도착할 수 있어 수신 노드에서 패킷을 재순서화하는 과정이 필요
- 메시지가 짧은 경우에 유리하며, 대역폭 설정을 융통성 있게 변경할 수 있음
- 전송속도 및 코드 변환 가능
- 각 패킷에는 목적지 주소 정보가 포함되어 있음

데이터그램(Datagram) 방식

패킷 교환의 특징

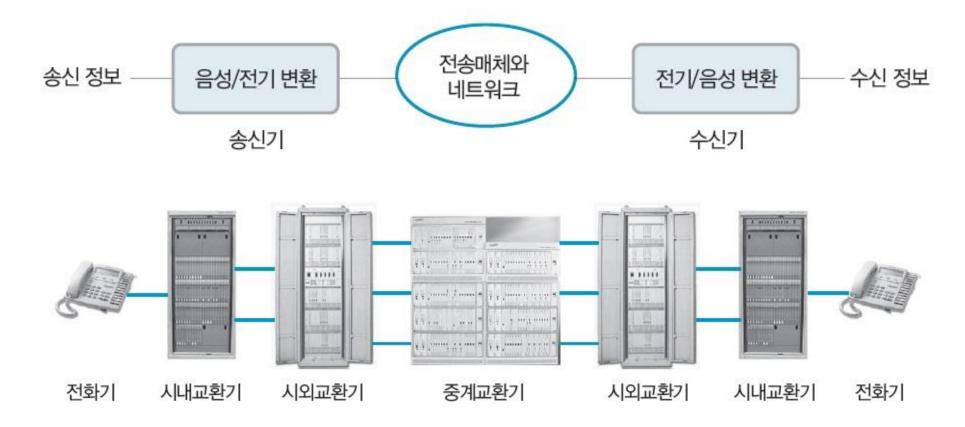
장단점	내용		
장점	 프로토콜이 다른 이기종 망 간의 통신이 가능하다. 장애 발생 시 대체 경로를 선택할 수 있는 등 회선 상태에 따라 경로 설정이 유동적이다. 패킷에 대한 우선순위를 부여할 수 있으며, 방송 형태의 전송이 가능하다. 통신에 과부하가 발생하면 전송 지연이 발생하지만, 패킷의 송신은 가능하다. 디지털 통신을 기본으로 하므로 전송 품질과 신뢰성이 높다. 하나의 링크를 공유하므로 이용 효율이 높다. 전송에 실패한 패킷에 대해서 재전송 요구가 가능하다. 데이터 전송률 변환이 가능하여 전송률이 서로 다른 노드 간에도 전송이 가능하다. 		
단점	 수신지에 도착한 패킷의 순서가 바뀔 수 있기 때문에 실시간 전송에는 부적합하다. 패킷 단위로 헤더를 추가하기 때문에 패킷별 오버헤드가 발생한다. 패킷 전송 지연으로 인해 한꺼번에 많은 데이터를 전송하는 데는 부적합하다. 		

교환 방식의 비교

방식	회선 교환	축적교환		
특징		메시지 교환	가상회선	데이터그램
송수 신 단위	메시지	메시지	패킷	패킷
전용 전송로	있음	없음	없음	없음
교환 장비	전자 기계식/컴퓨터 화된교환기	파일 저장 기능이 있 는 메시지 교환센터	소규모 컴퓨터	소규모 컴퓨터
전송 경로	동일한 전송 경로	메시지마다 경로 설 정	전체 전송을 위한 경 로 설정	패킷마다 경로 설정
통신 내용의 저장 기능	없음	파일로 저장, 필요 시 검색	일시 저장 검색 기능 없음	일시 저장 검색 기능 없음
전송 형태	점-대-점	브로드캐스트/멀티캐 스트 가능	브로드캐스트/멀티 캐스트 일반적으로 불가능	브로드캐스트/멀티 캐스트 일반적으로 불가능
코드와 통신속도 변환	없음	있음	있음	있음
송수신 데이터 순서	일치	불일치	일치	불일치
대역폭	고정	동적	필요에따라선택가능	필요에 따라선택가능

교환 방식의 비교

방식	회선 교환	축적교환		
특징		메시지 교환	가상회선	데이터그램
수신 측 주소	연결 확립 후 불필요	메시지마다 필요	연결 확립 후 불필요	패킷마다 필요
오버헤드 비트 등 제어 정보	연결 확립 후 불필요	메시지마다 필요	패킷마다 필요	패킷마다 필요
통신선로 오류 발생 시	다른 회선 재설정	여러 경로 중 선택	다른 회선 재설정	여러 경로 중 선택
지연 후 전송	불가능	수신 측이 준비되면 전송, 준비되지 않으 면 지연 후 전송	브로드캐스트/멀티 캐스트 전송 가능	브로드캐스트/멀티 캐스트 전송 기능
과부하	연결 호출 설정 거부 와 중단	메시지 전송 지연 증가	연결 호 설정 거부와 중단 연결 설정 후에는 패킷전송 지연증가	패킷 전송 지연 증가
데이터의 분실 책임	사용자가 메시지 분 실 방지 책임	네트워크가 메시지 분실방지책임	네트워크가 패킷 순 서 책임	네트워크가 각 패킷 분실 방지 책임
적합한 전송 형태	길이가 긴 메시지 연 속 전송	속도가 느린 메시지 전송	대량 데이터를 순간 적으로 고속 전송	대량 데이터를 순간 적으로 고속 전송
응용 분야	실시간 대화형 가능	실시간 대화형 어려움	실시간 대화형 가능	실시간 대화형 가능


공중 전화망PSTN, Public Switched Telephone Network의 정의와 역사

- 전화를 발명한 벨 시대부터 계속 발전해온 회선 교환망의 집합체로, 음성 위주의 공중 전화망을 모아놓은 것
- 현재 공중 교환 전화망은 사용자를 전자 교환기로 연결해 전화 등의 음성 서비스를 제공하는 통신망
- 종단 링크 부분을 제외하고 거의 디지털 방식으로 전환되므로 공중 전화 망이라고도 함

연도	설명	
1837년	모스(Samuel F. B. Morse)가 발명한 전자 신호를 정보 전달에 이용한 첫 번째 장치	
1876년	벨(Alexander Graham Bell)이 특허 등록	
1878년	처음으로 미국에 교환기 설치	
1940년대	TDM 기술을 이용해 디지털 전송 기술 개발	

공중 전화망의 전송 원리

■ 전기적 진동으로 정보를 교환하는 장치인 전화기를 매개체로 정보를 교 환

공중 전화망의 구성요소

종류	구성요소		기능	
	가입자 선로		전화기를 시내교환기에 연결하는 전송 설비	
전송 장치	중계선	시내중계선	시내교환기 간 연결과 시내교환기와 시외교환기 간 연결	
		시외중계선	시외교환기 간 연결	
	시내교환기		가입자 선로를 이용해 가입자 전화기를 수용하며, 동일 교환기나 다 른 교환기로 교환하는 기능	
교환 장치	시외교환기		시내중계선과 시외중계선 사이를 연결하며 교환하는 기능	
	중계교환기		시외교환기와 기능이 비슷하고, 시내 지역에만 설치할 수 있는 특수 한 형태의 교환기	

공중 전화망 교환기의 분류

- 공통 제어 방식 : 제어 회로를 한 군데 집중시켜서 통화 회로 전체의 접속 상태를 파악하여 능률적인 접속 경로를 선택하는 방식
- 단독 제어 방식 : 스위치 각각에 제어 회로가 붙어 있어서 각 스위치가 독 립적으로 선택 제어를 할 수 있는 방식
- 축적 프로그램 제어 방식 : 공통 제어 방식의 일종이지만 기능적으로 보다 집중화된 장치(대부분의 전자 교환기에 사용하는 방식)

우리나라 전화망의 구성(총 3계층)

- 단국(End Office) : 가입한 전화를 직접 수용
- 중심국(Toll Center) : 단국을 몇 개 모아 대도시에 둠
- 총괄국(Regional Center) : 중심국을 또 다시 연결

공중 전화망의 작동 방식

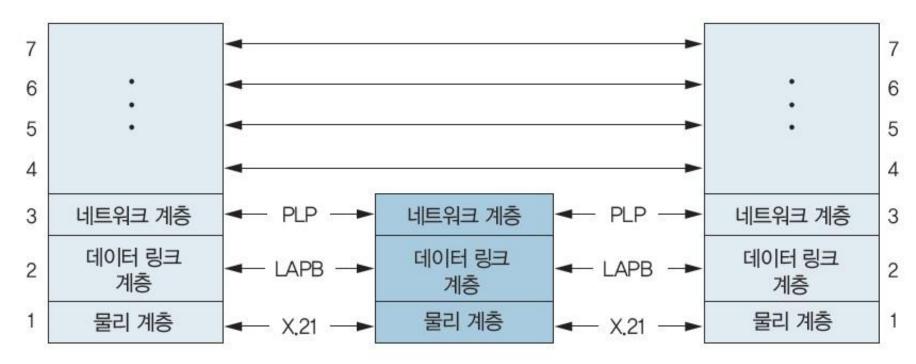
단계	작동 방식		
① 온 후크(On-hook)	• 수화기의 후크가 눌린 단계		
② 오프 후크(Off-hook)	• 수화기를 들어올린 단계		
③ 다이얼링(Dialing)	• 전화기의 다이얼 번호를 누르거나 돌리는 단계		
④ 스위칭(Switching)	 시내교환기는 누른 번호에 따라 상대방에게 접속할 수 있는 경로의 스위치를 연결하고, 상대방이 똑같은 구역 내에 있으면 즉시 상대방 가입자 회선의 회로를 연결하고 시외 통화나 다른 구역에 있는 시내 통화일 때는 상대방 전화국교환기를 연결하는 중계회선으로 접속 상대방 번호도 각 교환기로 보내져 필요한 스위치를 차례로 연결하고, 상대방에게 가는 경로를 설정 수많은 전화 가입자 중 연결을 원하는 상대방만 골라 발신자와 착신자를 연결하는 다양한 경로를 생성 		
⑤ 전화벨 울리기(Ringing)	• 상대방 전화기의 벨이 울리는 단계		
⑥ 말하기(Talking)	• 상대방과 대화하는 단계		

공중 전화망의 신호 방식

- 신호와 트래픽이 동일한 회선 및 동일한 루트를 통해 전달되는 개별선 신호 방식
- 개별선 신호 방식의 종류에는 R2, Loop Decadic 등이 있음

공중 전화망과 패킷망VoIP, Voice over Internet Protocol

■ 음성 패킷망 : 기존에 공중 전화망(PSTN)을 통해 이루어졌던 음성 서비 스를 인터넷 프로토콜을 이용해 패킷 형태로 전송하는 기술


구분	장점	단점
PSTN (공중 전화망)	• 통화 품질이 좋음 • 안정적 서비스 제공 • 정전 시에도 사용 가능	통화료가 상대적으로 비쌈이동성이 제한됨한 명이 독점적으로 사용
VoIP (음성 패킷망)	 통화료 및 회선 유지 비용 저렴 다양한 부가 서비스 기능 장소 제약 없고 규모 확장 용이 다수 사용자가 동시에 사용 가능 	 기존 PSTN에 비해 상대적인 음질 저하 정전 및 장애 시 인터넷 전화 사용 불가 긴급 전화로써 신뢰성 부족 이용 방법이 복잡

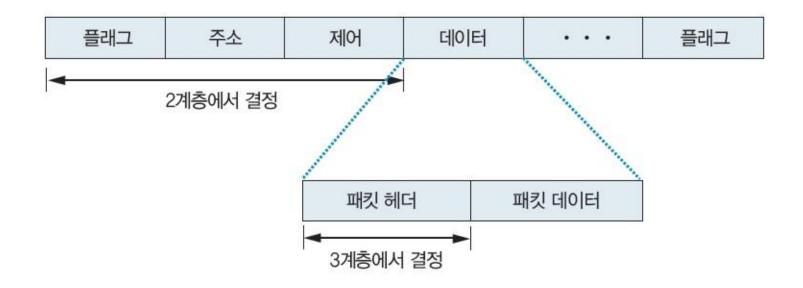
패킷 교환 공중 데이터 통신망(PSDN)

- 불특정 다수 사이에서 교환 접속을 하려고 데이터 전송 서비스를 제공하 는 전용망
- 데이터를 패킷 단위로 송수신해 패킷 교환망이라고도 함

X.25

■ ITU-T에서 재정한 표준안으로, 패킷 교환망에서 패킷형 단말과 패킷 교 환기 간의 인터페이스를 규정하는 프로토콜

· PLP: Packet Layer Protocol

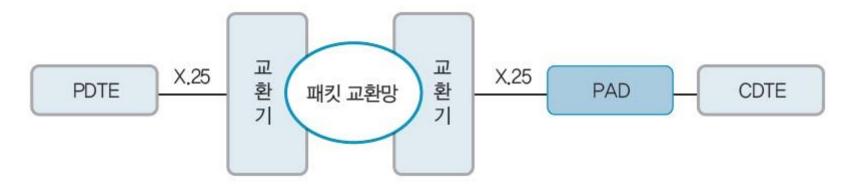

LAPB: Link Access Procedure, Balanced

물리계층

- 상위 계층과도 통신할 수 있도록 DTE와 DCE 사이를 접속하는 데 필요한 물리적 회선에 관한 다양한 접속 양식을 정의
- 표준 방식으로 ITU-T의 X.21(동기식 디지털 인터페이스), X.21bis(동기 V 계열의 모뎀을 사용하는 인터페이스 방식), 미국 EIA의 RS-232C, RS-422 등이 있음
- 물리 계층의 전송로는 아날로그나 디지털 회선으로 구성할 수 있음

데이터 링크 계층

- LAPB(Link Access Procedure, Balanced) 방식을 정의하며, ISO7776에서 제정
- HDLC 프로토콜의 일종으로, 데이터 링크 계층의 제어 순서, 오류, 흐름 등을 제어

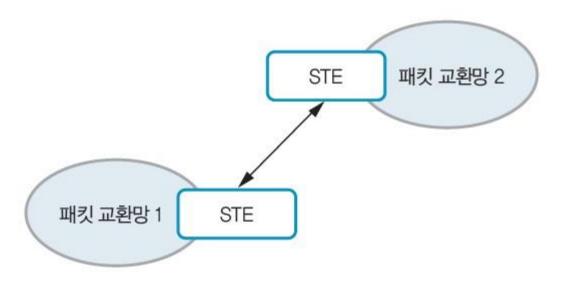


네트워크(패킷) 계층

■ 데이터를 패킷 단위로 분해·조립, 오류와 흐름을 제어, 가상회선을 설정하고 해제, 다중화 기능과 망이 고장나면 필요한 회복 메커니즘 등을 규정

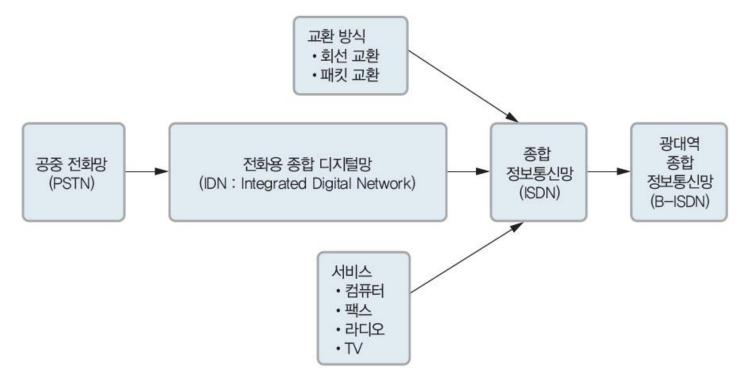
X.25에서 사용하는 패킷 단말기와 비패킷 단말기

- X.25를 지원하지 않는 비패킷 단말기(CDTE)는 중간에 PAD 필요
- PAD : X.25 패킷 교환망에서 CDTE 단말기를 접속할 수 있게 해주는 프로 토콜 변환기



PAD와 관련된 권고안(ITU-T 발표)

- X.3 : 패킷 사이에서 패킷을 분해하고 조립하는 절차를 규정
- X.28 : CDTE 단말기와 PAD 간의 접속과 데이터 교환 절차를 규정
- X.29 : PAD와 X.25 접속 모드, PAD 간 제어 정보를 교환하는 절차를 규정


X.75

■ 제반 시스템의 구조, 패킷 교환 방식에 관한 규정과 망 간 접속을 담당하는 장비인 STE(Signalling Terminal Equipment)의 특성을 규정

N-ISDNNarrowband-Integrated Service Digital Network의 정의

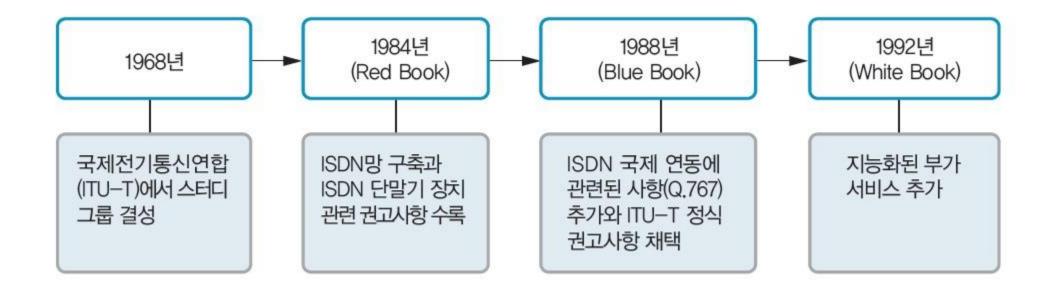
- 종합정보통신망 ISDN이라고도 함
- 여러 서비스를 통합한 디지털 통신망으로, 전화 서비스를 제공하는 전화 교환망 (PSTN)에 디지털 기능을 추가하여 음성이나 비음성(인터넷, 팩스, PC통신) 등 다양한 형태의 정보를 한 회선으로 서비스하는 방식

N-ISDN의 등장 배경과 발전 동향

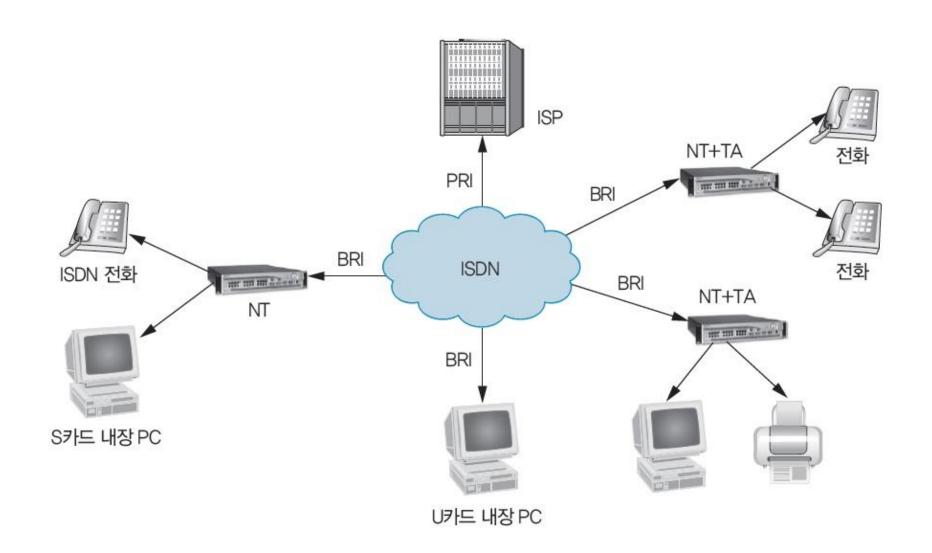
■ 광역 통신망은 점차 지점 단말기 수가 늘고, 모뎀을 여러 개 사용할 수 없는 상황이 되면서 이를 해결하기 위해 집중화 장비인 MUX(MUltipleXer)가 등장

■ TMD

- 가장 먼저 등장한 집중화 장비
- 모뎀이 발전한 형태인 디지털 서비스 유닛과 함께 56kbps, 64kbps 미만의 속도를 제공
- 회선 낭비가 단점

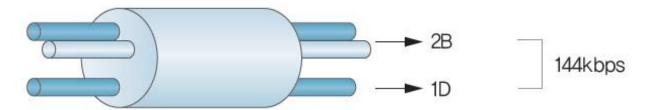

STDM(Statistical TDM)

- 전송 지연 시간을 줄이는 데 기여한 장비
- CSU와 함께 사용하며, 56kbps, 64kbpsT1(1.544Mbps)/E1(2.048Mbps)의 속도를 지원
- 다양한 프로토콜을 전송해주지만, 표준화 미비로 사설 네트워크에만 한정됨


X.25

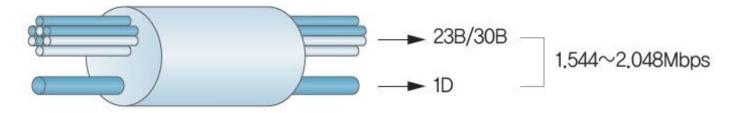
- 패킷망 네트워크
- 데이터 전송속도는 64kbps, 장비 가격이 비쌈(프레임 릴레이로 단점 보완 가능)
- 그 후에 출현한 기술이 종합정보통신망, 비동기 전송 방식에 기반을 둔 B-ISDN도 출현

정보통신망의 표준화 과정


ISDN의 구성

ISDN의 채널 접속 규격

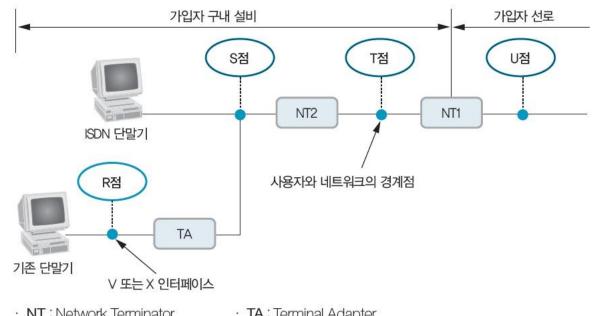
- ① 기본률 접속(BRI, Basic Rate Interface)
 - 가정이나 사무실 등에서 널리 사용하는 ISDN 서비스로, 2B+D 구성(속도가 64kbps인 통신 채널 (Bearer Channel) 2개와 속도가 16kbps인 신호 채널(Data Channe)l 1개로 구성되며, ISDN의 가장 기본 서비스를 제공)
 - 통신 채널(B): 사용자가 실제로 사용할 수 있는 채널
 - 신호 채널(D): 교환기와 노드 사이에서 호를 설정하고 해지해 주는 채널
 - 오버헤드 채널 : 유지보수 데이터와 동기용 데이터를 전송하고 16kbps 속도를 지원
 - 기본율 접속의 전송 능력은 144kbps(2B+D=64×2+16)
 - 전화 가입선이라면 음성은 B채널, 다이얼 신호는 D채널, 패킷은 B나 D채널로 송수신함


B채널: 64kbps, D채널: 16kbps

ISDN의 채널 접속 규격

- ② 1차율 접속(PRI, Primary Rate Interface)
 - 통화량이 한 곳에 집중되고 이용자가 많은 ISP(Information Service Provider)와 고속 데이터 통신 등에서 접속하여 사용하는 서비스
 - 구성은 23B+D인 북미 방식과 30B+D인 유럽 방식이 있음(우리나라는 유럽 방식 사용)
 - 속도가 64kbps인 통신 채널 23개나 30개와 속도가 64kbps인 신호 채널 1개로 구성
 - ISDN 사설교환기나 기업의 LAN 서비스를 제공
 - 1차율 접속의 전송 능력은 북미 방식이 1.544Mbps(23B+D=23×64+64), 유럽 방식이 2.048Mbps(30B+D+오버헤드=30×64+64+64), D채널은 64kbps를 사용

B채널: 64kbps, D채널: 64kbps

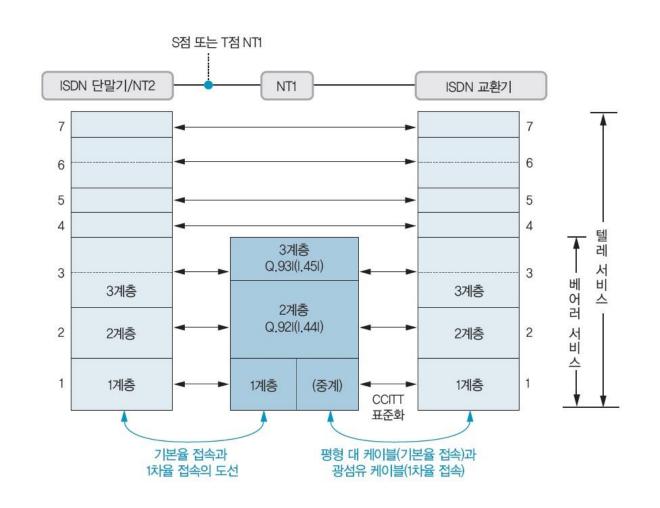


ISDN의 채널 접속 규격의 종류와 특징

종류		신호속도(kbps)	특징	
В		64	정보 채널회선 교환, 패킷 교환부호화된 음성	
D		16이나 64	• 신호 채널 • 패킷도 전송 가능	
	НО	384	• 영상회의와 고속 팩스 전송	
Н	H11	1,536	• 고속 데이터 전송	
	H12	1,920		
П	H2	7,680		
	НЗ	3,070		
	H4	122,880		
А		4kHz	• 아날로그 전송	
С		8	• 신호	

I 인터페이스와 참조점

- I 인터페이스 : 사용자와 ISDN에 접속하는 방법에 관한 것, 1984년 CCITT I 시리즈 권고안에 규정
- 참조점 : 다양한 단말기와 통신기 기가 접속할 수 있게 접속 모양을 명확히 함
- ISDN 내에서 가입자 선로에 가까 운 쪽부터 U점, T점, S점, R점이 있

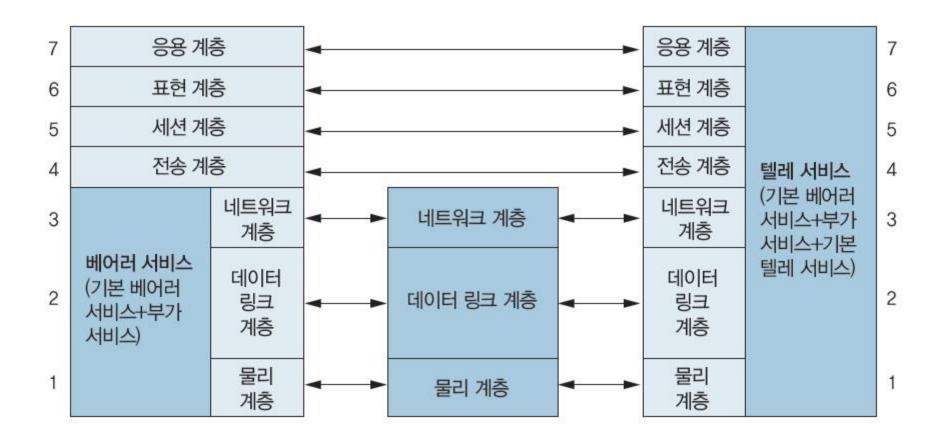

· TA: Terminal Adapter

ISDN의 장비 종류와 기능

종류	가능	
NT(Network Terminator)	• ISDN과 사용자의 단말기를 연결하는 접속 기능 수행 • 여러 경로로 연결된 망을 빠져나오게 하는 네트워크 종단 장치	
S카드	• S지점에 접속하는 내장형 ISDN 모뎀 • 최고 128kbps까지 통신 가능	
U카드	• S카드와 함께 모뎀 기능을 하며, U지점에 연결되기에 NT가 불필요 • NT가 없으므로 ISDN 단말기를 여러 대 연결하여 사용할 수 없음	
터미널 어댑터(TA)	• 비 ISDN 단말기(전화기, 팩스, 아날로그 모뎀 등)를 ISDN에 접속하게 해 주는 장비	
ISDN 전화기	 디지털 전화 통화 기능이 있는 디지털 전화기 디지털 통화를 하므로 음질이 선명하고 통화 감도가 뛰어남 ISDN의 다양한 부가 서비스를 받을 수 있음 	
잭(Jack)	• S점에는 RJ45를 사용 • U점에 사용되는 접속 잭은 RJ11이나 RJ45	

ISDN 프로토콜(3계층으로 구성)

- 1계층 : 물리적 조건(전기 신호와 배선 형태 등) 정의
- 2계층 : 메시지를 전송하는 링크 설정과 오류 제어 등을 정의
- 3계층 : 호의 설정과 개방, 부가 서 비스의 제어를 포함하는 호 제어 사항 정의

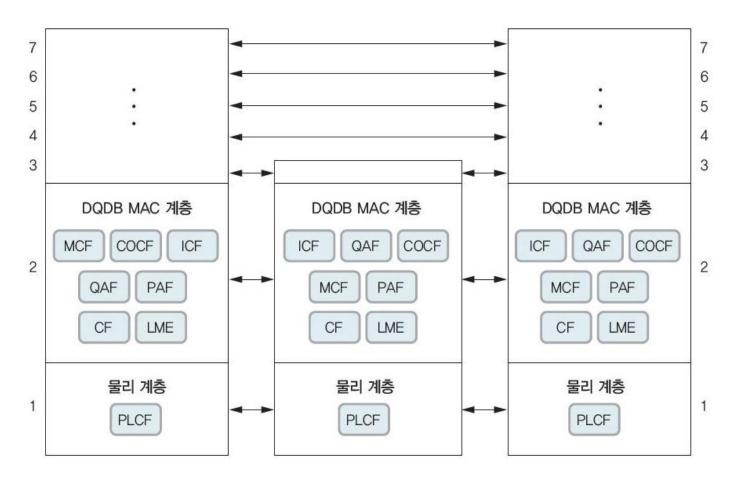


ISDN의 서비스

- 네트워크와 단말 장치가 사용자에게 제공하는 통신 기능
- 베어러 서비스와 텔레 서비스를 결합하여 확장된 서비스를 부가 서비스 라고 함

종류	설명	서비스 분야
베어러 서비스	 통신망이 제공하는 서비스로, 가입자의 정보를 변경하지 않고 전송만 하는 서비스 OSI 7계층 중 하위 3계층만 지원 회선 방식과 패킷 방식으로 분류 	음성과 음향, 영상 데이터 등
텔레 서비스	 통신망과 단말기 등에 고도의 기능을 부가하여 제공 어정보 가공과 전송 기능 제공 OSI 7계층 중 1∼7계층 모두 지원 	전화, 팩스, 텔렉스, 텔레텍스, 비디오텍스 등

ISDN의 서비스 계층


ISDN의 특징

관점	특징
이용자 측면	 통합된 통신용 디지털 소켓 등으로 사용 가능 디지털 통신 기술을 이용해 오류 발생률을 줄이고, 신뢰성 있는 통신이 가능하며, 획기적인 통신능력과 다양한 통신 기능 제공 상대적으로 저렴한 통신 이용요금과 무한한 발전 가능성 제공
통신사업자 측면	장비를 통합해 공동으로 이용하므로 이용자 서비스 향상 통합화로 경제성과 효율성 제공 고기능 제공, 고속 통신 채널 설정이 쉬움

DQDBDistributed Queue Dual Bus의 개념과 등장 배경

- MAN에서 사용하는 IEEE802 계열의 표준 프로토콜
- 논리적 이중 버스로 구성해 데이터를 각기 다른 방향으로 전송
- DQDB는 1980년대 호주의 한 대학생이 아이디어를 제시하면서 등장 (LAN이 널리 보급됨에 따라 분산된 LAN을 상호 접속할 필요성이 늘어났기 때문)
- IEEE802.6 분과에서 1981년부터 MAN 기술 표준화를 추진해 1990년에 야 IEEE802.6 표준으로 채택됨

DQDB 프로토콜의 계층 구조

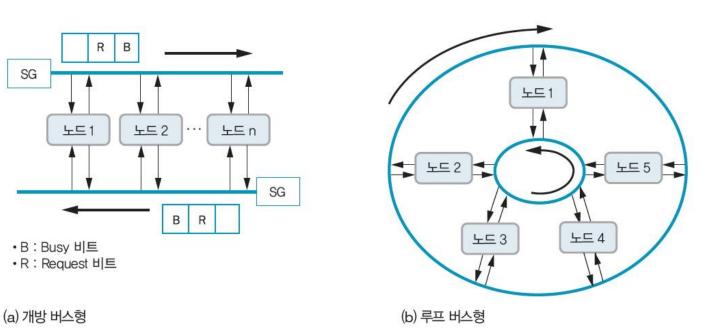
- · MAC: Medium Access Control
- MCF : MAC Convergence Function
- COCF: Connection-Oriented Convergence Function
- ICF: Isochronous Convergence Function
- · QAF: Queued Arbitrated Function

- · PAF: Pre Arbitrated Function
- LME : Layer Management Environment
- · CF: Common Function
- PLCF : Physical Layer Convergence Function

DQDB의 물리 계층

- 물리 계층 수렴 프로토콜(PLCP, Physical Layer Convergence Protocol)을 제공
- PLCP는 물리 계층 수렴 기능(PLCF, Physical Layer Convergence Function)을 지원
- 상위계층인 DQDB MAC 계층이 동작하도록 지원

DQDB의 MAC 계층


- 공통 기능(CF, Common Function)
 - DQDB의 모든 서비스에서 필요한 기능을 제공 (슬롯의 송수신 기능, 버스의 헤드기능,
 - 구성 기능, 메시지 확인 기능 등을 제공)
- 접근 제어 기능(ACF, Access Control Function)
 - 동기 데이터를 전송하는 데 사용하는 PA(Pre Arbitrated) 슬롯과 비동기 데이터를 전송하는 데 사용하는 QA(Queued Arbitrated) 슬롯 각각에서 제공
- 수렴 기능(MCF, MAC Convergence Function)
 - DQDB 사용자에게 다양한 서비스를 지원하는 기능을 제공

DQDB 네트워크의 구성

- 네트워크 형태는 개방 버스형과 루프 버스형 두 가지
- 논리적 이중 버스로 구성되며, 각기 다른 방향으로 데이터를 전송

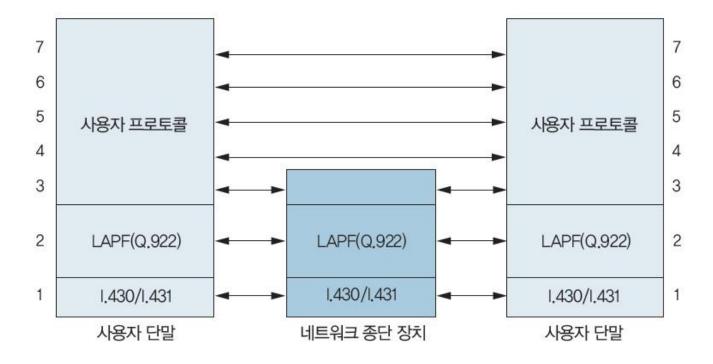
■ 각 버스의 슬롯 생성기(SG, Slot Generator)에서 일정 간격으로 53바이트 의 고정 길이 슬롯을 생성하며, 슬롯이 통과하여 양방향 데이터 전송이

가능

DQDB의 특징

- DQDB는 광섬유로 최대 전송 가능한 속도에 제한을 두지 않음
- 155Mbps의 속도는 멀티미디어 전송 서비스에 효율적
- DQDB 슬롯의 크기가 53바이트라서 셀 규격이 동일한 B-ISDN, MAN 등과 호환이 가능해 쉽게 접속할 수 있음

프레임 릴레이(Frame Relay)의 개념

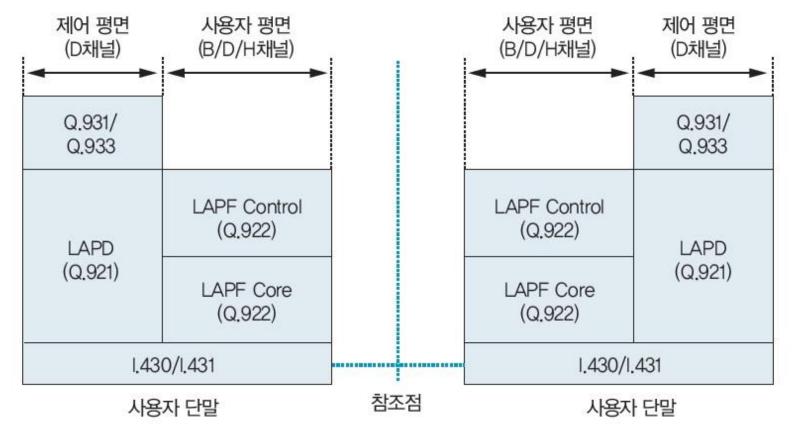

- 패킷 교환망에서 데이터 링크 계층의 패킷을 중계하며, 각각 다른 채널로 사용자 정보와 호 제어 정보를 송수신하는 프로토콜
- 고속의 대용량 서비스와 광역의 데이터 교환 서비스가 가능하며, 1.5~2Mbps 속도로 패킷을 변환하여 전송

프레임 릴레이의 등장 배경

- 프레임 릴레이는 X.25 프로토콜의 문제점을 개선하려고 ITU와 ANSI에서 개발
- ISDN용 데이터 전송 프로토콜로 개발되었으나 점차 독립적으로 서비스 할 수 있게 개선됨

프레임 릴레이 프로토콜 서비스

- 프레임 중계 서비스(Frame Relaying Service)
 - LAPF(Link Access Procedure for Frame-mode bearer services)를 기본 프로토콜로 사용
 - 단순하게 데이터를 전송하고, 오류가 발생한 프레임을 제거하는 기능을 함

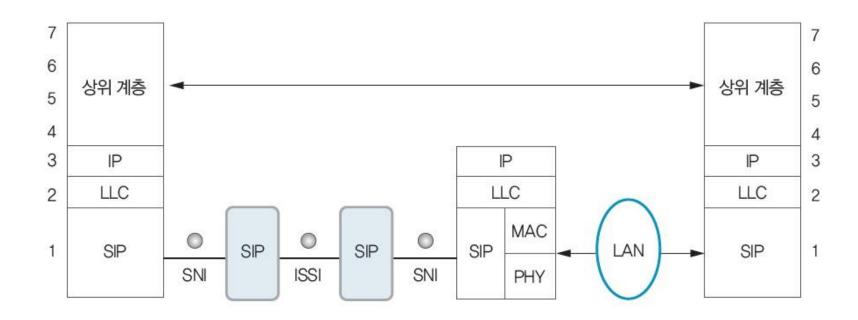

프레임 릴레이 프로토콜 서비스

- 프레임 교환 서비스(Frame Switching Service)
 - LAPF 제어 프로토콜(Control Protocol)을 사용
 - 흐름을 제어하고 오류를 정정하는 기능을 함

프레임 릴레이의 사용자-네트워크 인터페이스 구조

■ 사용자 평면 프로토콜(User Plane Protocol)과 제어 평면 프로토콜 (Control Plane Protocol)로 구성

프레임 릴레이의 특징


- 데이터 패킷과 제어 패킷을 각각 다른 채널로 전송함으로써 데이터를 고 속으로 전송할 수 있음
- 네트워크 기능도 단순함
- X.25보다 유연하게 통신을 처리할 수 있고, 전송 지연은 줄이고 단위 시 간당 처리량은 늘려줌
- 데이터가 제대로 전송되는지는 망내에서 확인할 수 없으므로 단말기 간 에 직접 오류와 순차를 제어함
- 음성, 이미지 전송에는 적합하지 않고, LAN에서 고속으로 전송하는 데 적합

SMDSSwitched Multimegabit Data Service

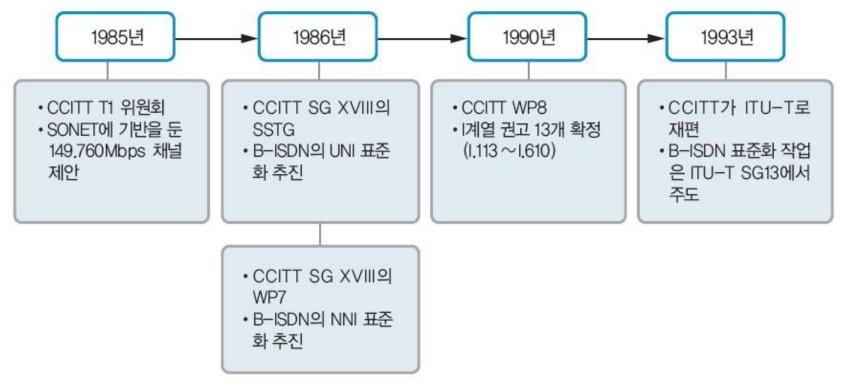
- SMDS의 개념
 - DQDB를 바탕으로 개발된 고속의 비연결형 데이터 전송용 프로토콜
 - 분산된 LAN을 연결하는 기간망이나 고속의 사설 네트워크를 구성할 수 있는 프로토콜이자 새로운 서비스를 제공하는 네트워크
- SMDS의 등장 배경
 - 미국 AT&T가 설립한 벨코어연구소에서 지역 전화사업자가 사용할 수 있도록 IEEE802.6 표준안인 DQDB 프로토콜을 기반으로 개발
 - 프레임 릴레이에서 ATM으로 발전하는 중간 단계에 해당하는 프로토콜

SMDS의 계층 구조

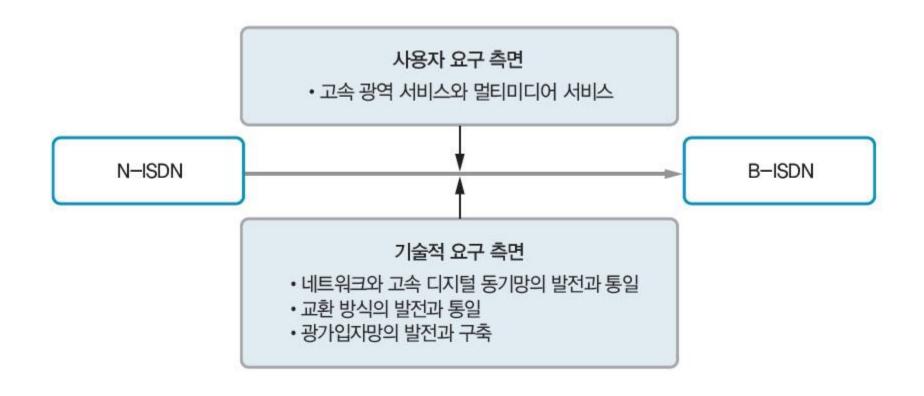
- 3계층 구조로, OSI 7계층에서 하위 3계층과 비슷함
- 1계층(SIP): SMDS 프로토콜과 연관된 SNI, ISSI, ICI가 있음
- 2계층(LLC): DQDB와 구조가 동일
- 3계층(IP): 상위 계층에서 데이터를 받아 2계층으로 넘기거나 그 반대의 기능을 함

SMDS의 특징

- 패킷을 데이터그램 방식으로 전송
- LAN을 고속으로 연결할 수 있고, 트래픽이 폭주하는 고속 응용에 적합
- 비연결형 데이터 전송이라 망 내의 노드를 스위치로 연결하지 못하고 라 우터로 연결해야 함
- 데이터 전송속도를 빠르게 하는 것이 어려움
- 도시 간 연결이 어렵고, 지역도 한정되어 있음


B-ISDNBroadband-Integrated Service Digital Network의 개념

■ 고속의 광역 서비스와 멀티미디어 서비스를 지원하기 위해 고속 전송 기술, 교환 방식 기술, 신호 기술, 반도체 기술, 영상 기술 등을 통합하여 서비스하는 통신망



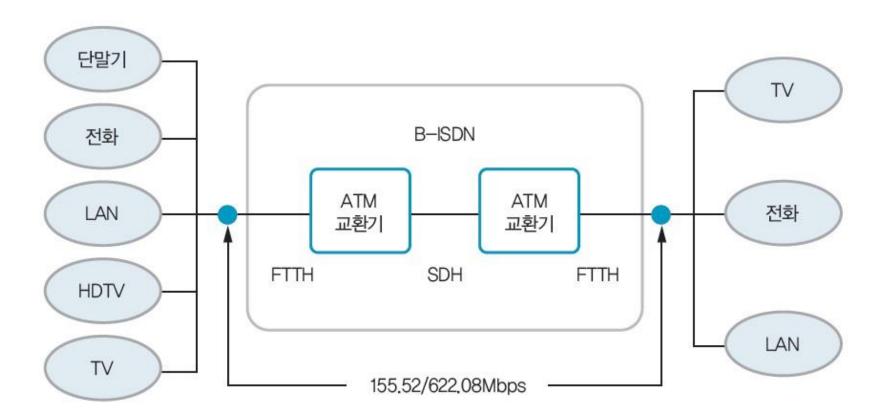
B-ISDN의 등장 배경과 표준화 과정

- 1988년 일본 NTT가 세계 최초로 N-ISDN 상용 서비스를 개시
- B-ISDN은 ITU-T에서 1985년 N-ISDN의 표준화를 정하고, 그 다음 연구 목 표로 시작한 것

N-ISDN과 B-ISDN 비교

N-ISDN과 B-ISDN의 신호 방식과 통신망

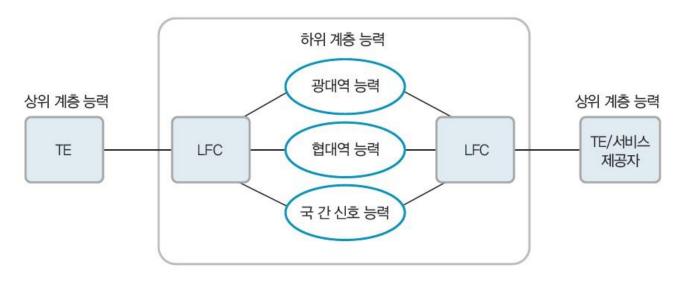
종류	신호 특성	
N-ISDN	 대칭적인 연결 형태 제공 단일 채널, 점-대-점 방식의 호 형태 회선 교환망 사용 가상 채널의 개념 없음 	 64kbps의 고정 대역폭 사용 호와 연결상의 구분 없음 신호 방식은 CCITT SS No.7
B-ISDN	 대칭적/비대칭적 연결 형태 제공 다중 연결, 멀티미디어 호 제공 ATM 패킷을 이용한 교환망 사용 가상 채널 개념 도입 	 가변 대역폭 사용 호와 연결 분리 신호 방식은 ATM 방식


N-ISDN과 B-ISDN의 전송 속도

- B-ISDN : 155.52Mbps나 622.08Mbps 속도의 인터페이스를 제공
- N-ISDN: 144kbps(64×2+16) 속도의 기본 인터페이스를 제공

N-ISDN과 B-ISDN 서비스와 기능

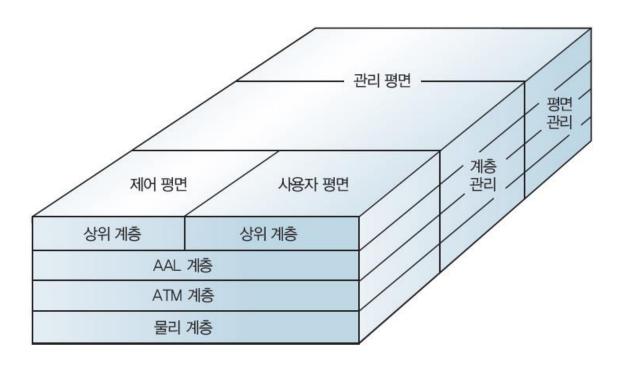
- N-ISDN : 기존 통신망을 일부 보완하여 서비스를 제공
- B-ISDN : 통신망 자체를 새로 구축해야 함
 - → N-ISDN과 B-ISDN은 서로 호환되지 않음


B-ISDN의 구조

- FTTH: 광섬유 케이블(Fiber-To-The-Home)
- SDH : 동기 디지털 계층(Synchronous Digital Hierarchy)
- ATM : 비동기 전송 모드(Asynchronous Transfer Mode)

B-ISDN의 구조

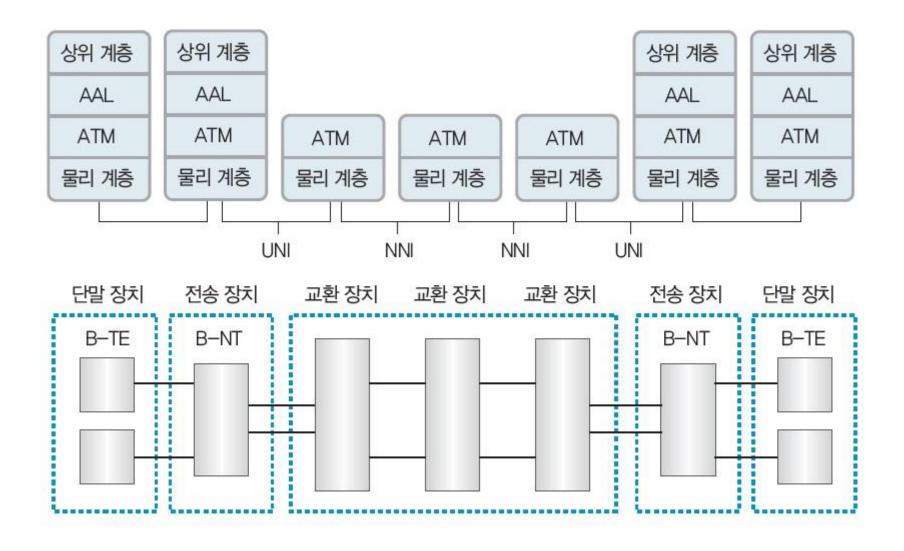
- 상위 계층 능력 : 단말기나 종단 장치를 포함
- 하위 계층 능력: 광대역 능력과 협대역 능력, 국 간 신호 능력 등으로 구성
 - 광대역 능력 : ATM으로 정보를 전송하는 능력
 - 협대역 능력: 64kbps 기반인 N-ISDN으로 회선을 교환하거나 패킷을 교환하는 능력
 - 국 간 신호 능력: ATM으로 교환기(교환국) 간에 전달되는 신호 능력



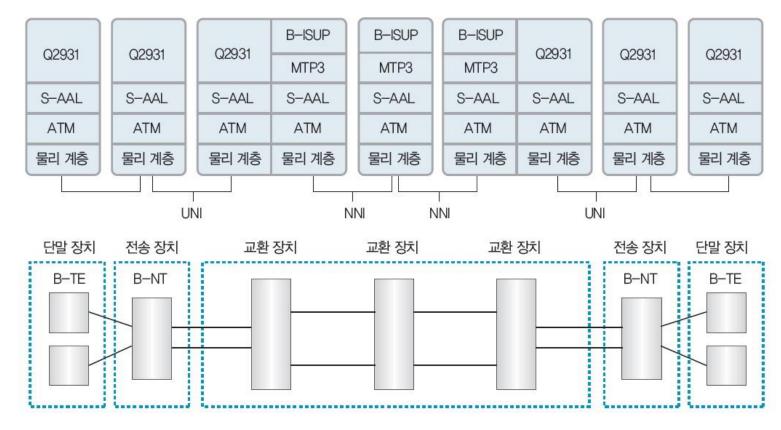
LFC: Local Function Capability

• TE: Terminal Equipment

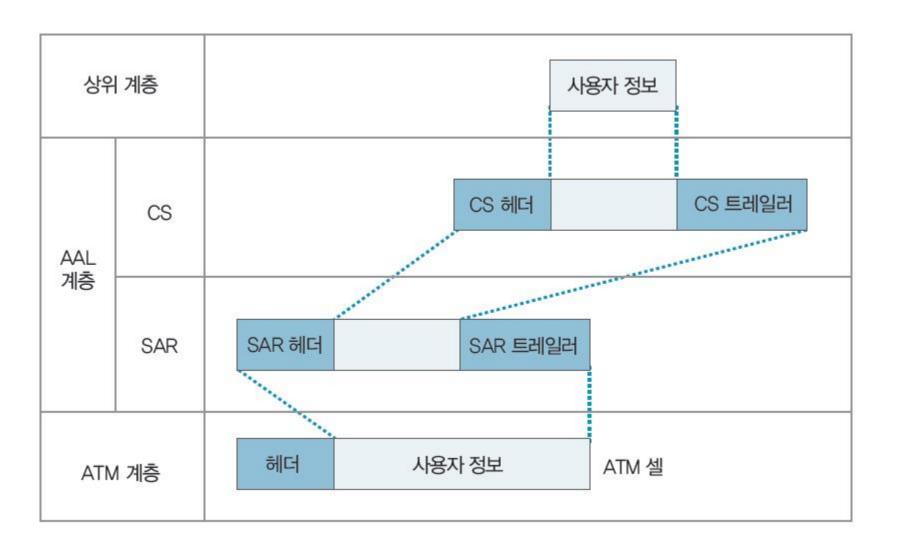
B-ISDN 프로토콜 참조 모델


- 관리 평면
 - 평면 관리 : 시스템 전반을 관리
 - 계층 관리 : 자원과 사용 변수를 관리
- 제어 평면 : 호 제어와 연결 제어 정 보 등을 담당
- 사용자 평면 : 사용자 정보를 전달

B-ISDN 프로토콜의 계층별 기능


계층	부계층	기능
상위 계층	_	• 상위 계층 기능
AAL 계층	수렴(CS)	• 상위 계층의 사용자 정보를 프로토콜 데이터 단위(PDU, Protocol Data Unit)로 만들어 주는 기능
	분할과 재합성(SAR)	• PDU를 분리하여 ATM 셀의 사용자 정보 단위로 구성
ATM 계층	<u>-</u>	ATM 셀의 헤더와 관련된 기능 흐름 제어 기능, 셀 헤더 생성과 추출 기능 셀 다중화와 역다중화 셀의 가상 채널 식별자(VCI)와 가상경로 식별자(VPI) 번역
물리 계층	전송 수렴(TC)	• 셀 분리 기능, 셀 경계 식별 기능 • 전송 프레임 발생과 복원
	물리 매체(PM)	• 물리 매체 관련 기능 • 비트 전송과 시간 정보

B-ISDN 프로토콜과 네트워크 장치의 관계



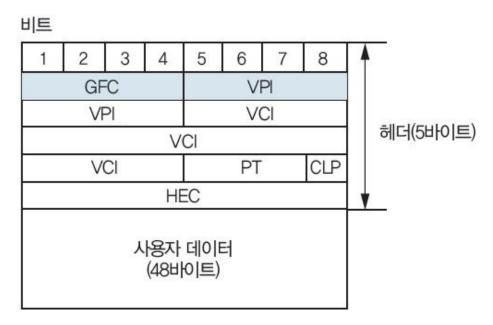
B-ISDN 프로토콜과 네트워크 장치의 관계

- 제어 평면 프로토콜
 - NNI : 네트워크에 있는 교환 장치나 다중화 장치
 - UNI: 사용자의 장비와 네트워크 분기점을 나타내는 인터페이스

B-ISDN 프로토콜에서 계층 간 관계

ATM

- B-ISDN을 구현하기 위하여 ITU-T에서 선택한 전송(교환) 기술
- 정보 처리량이 많고 고속화가 필요한 B-ISDN 등의 교환 방식으로 적절


회선 교환 방식과 비교한 ATM 교환 방식의 장점

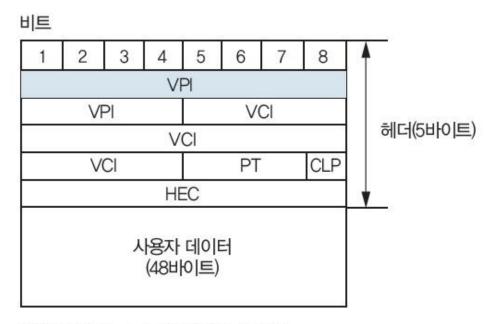
- 망 자원이 비어 있을 때 어느 서비스라도 망 자원을 사용할 수 있음
- 다양한 대역폭을 갖는 서비스를 처리할 수 있음
- 다양한 종류의 트래픽을 통합할 수 있음

ATM 셀의 구조

- ATM 셀의 전체 크기는 53바이트로, B-ISDN에서 전송의 기본 단위
- 크기가 5바이트인 헤더와 48바이트인 사용자 데이터로 구성
- ATM 셀의 헤더
 - GFC: 네트워크로 유입되는 트래픽 양을 제어하며, 크기는 4비트
 - VPI, VCI : 경로와 링크를 구분하려고 식별자를 기록하는 부분, UNI일 때는 크기가 24바이트이고, NNI일 때는 크기가 28바이트
 - PT : 사용자 데이터를 포함하는 셀과 제어 데이터를 포함하는 셀을 구분
 - CLP: 네트워크에 과부하가 발생하면 해당 셀의 포기 여부를 표시
 - HEC : 셀 오류를 검출하고 정정(셀 헤더에 순환 중복 검사(CRC) 값을 포함)

ATM 셀의 구조

· GFC : Generic Flow Control

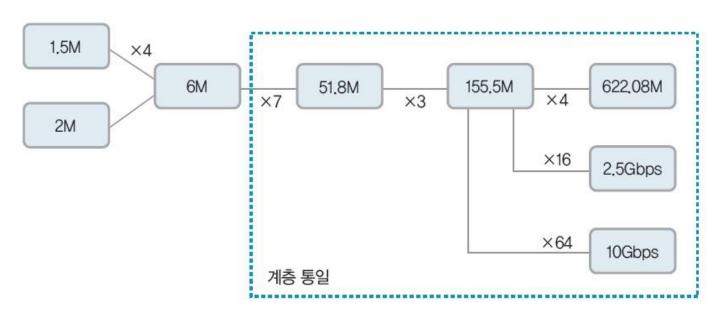

· VPI : Virtual Path Identifier

· VCI: Virtual Channel Identifier

· PT: Payload Type

· CLP : Cell Loss Priority

· HEC: Header Error Control

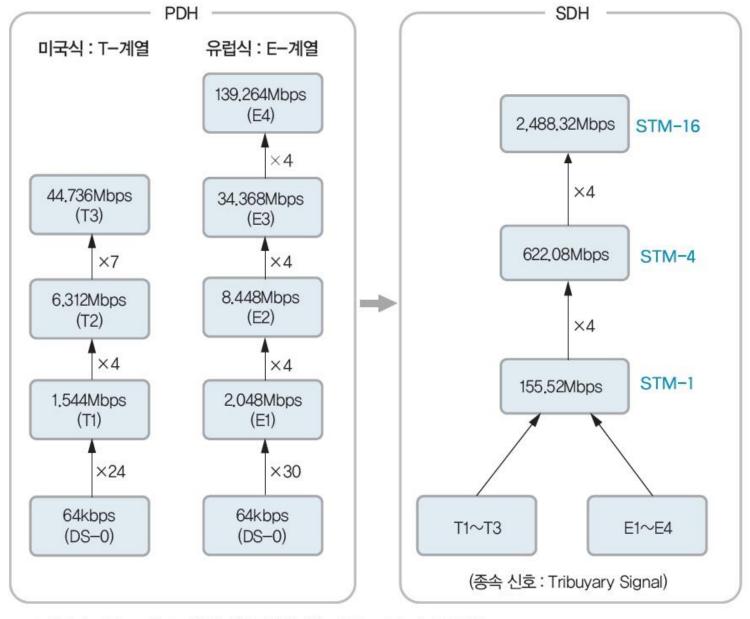

(b) 네트워크 - 노드 인터페이스(NNI)

ATM의 교환 방식과 다중화

- 디지털 통신 방식인 회선 교환 기술과 패킷 모드 통신 방식을 결합한 형 태
- 53바이트인 ATM 셀을 패킷 단위로 만들어 패킷 교환 원리를 발전시킨 새로운 전달 모드
- 비동기식 시분할 다중화 방식ATDM을 사용

SDH의 개념

- 동기화 데이터를 전송하는 국제 표준 기술
- 기본 속도는 155.52Mbps이며, 1.5Mbps나 2Mbps인 기존 속도의 정배수
- STM-1(Synchronous Transport Module-1) 시리즈와 속도를 사용
- SDH의 전송 레벨은 155.52Mbps를 STM-1로 시작하여 최대 STM-256까지 정의
- 실제 응용은 1, 4, 16만 적용


SDH의 등장 배경과 필요성

- 미국과 유럽 방식을 상호 접속할 때는 인터페이스 장치가 따로 필요했음
 - 미국의 PDH : 64kbps를 24개로 다중화한 1차군(1.544Mbps)을 기본으로 발전
 - 유럽의 PDH : 64kbps((음성 데이터 7비트+오버헤드 1비트)×8)를 30개로 다중화한 1차 군(2.048Mbps)을 기본으로 발전
- 통신 관리망(TMN) 등 망 관리에 필요한 신호 대역 등이 부족한 상태였음
- PDH의 단점을 개선하려고 ITU-T 중심의 표준 기술인 SDH를 제정

SDH의 특징

- 모든 통신망에 적용할 수 있고, 서로 다른 업체도 직접 접속할 수 있으며, TMN 등 망 관리와 유지에 필요한 신호 대역이 할당되어 있음
- 기본 신호 전송속도를 모두 사용 가능
- 새로운 서비스도 수용할 수 있음
- 중간 단계의 다중화 장비 없이도 접속할 수 있음

PDH와 SDH의 다중화 단계

• DS(Digital Signal)-0 : 음성 신호를 전송하는 64kbps를 기본으로 함

SONET(Synchronous Optical NETwork)의 개념

- 물리 계층 망인 광전송망 노드와 망 간의 접속을 표준화한 것
- STS-1을 기본으로 하여 STS-3, STS-9, STS-12처럼 3배수로 다중화

SONET의 등장 배경과 필요성

- AT&T에서 1984년 T1(북미통신표준기구)에 광통신 시스템 접속 표준안 으로 제안
- 범세계적이고 융통성 있는 전송 네트워크를 실현해 주는 광통신 전송 시 스템 표준화가 목적
- 프레임 구조를 3배 확장한 9×270바이트의 155.520Mbps 구조를 ITU-T 의 권고안으로 채택

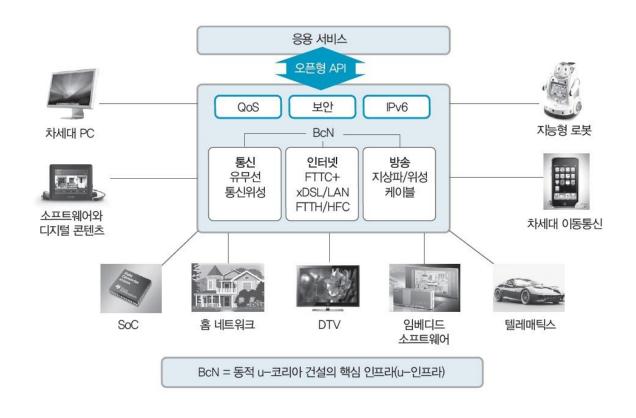
SONET의 특징

- 서로 다른 업체 간에도 호환이 되고 새로운 서비스 플랫폼에도 유연함
- 구조가 순차적인 동기식이며, 단순하게 다중화하여 설치할 장비를 줄여 줌

SDH와 SONET의 통신속도

속도(Mbps)	단위	SDH	SONET
51.84	OC-1	_	STS-1
155,52	OC-3	STM-1	STS-3
466,56	OC-9	_	STS-9
622.08	OC-12	STM-4	STS-12
933.12	OC-18	-	STS-18
1,244.16	OC-24	_	STS-24
1,866,24	OC-36		STS-36
2,488,32	OC-48	STM-16	STS-48
9,953.28	OC-192	5000	STS-192

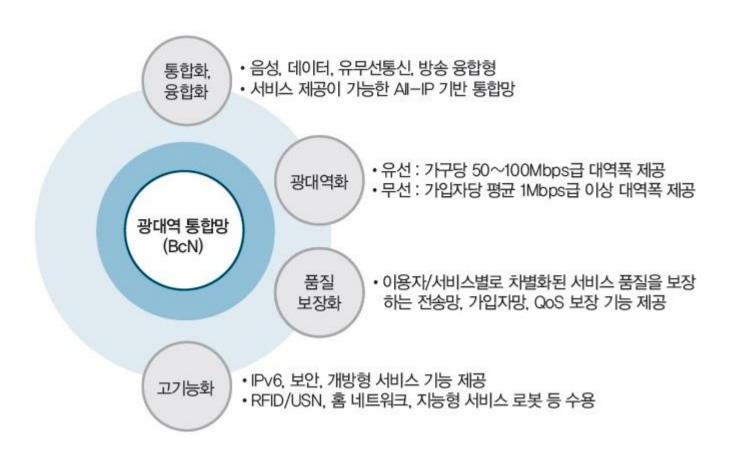
B-ISDN의 특징

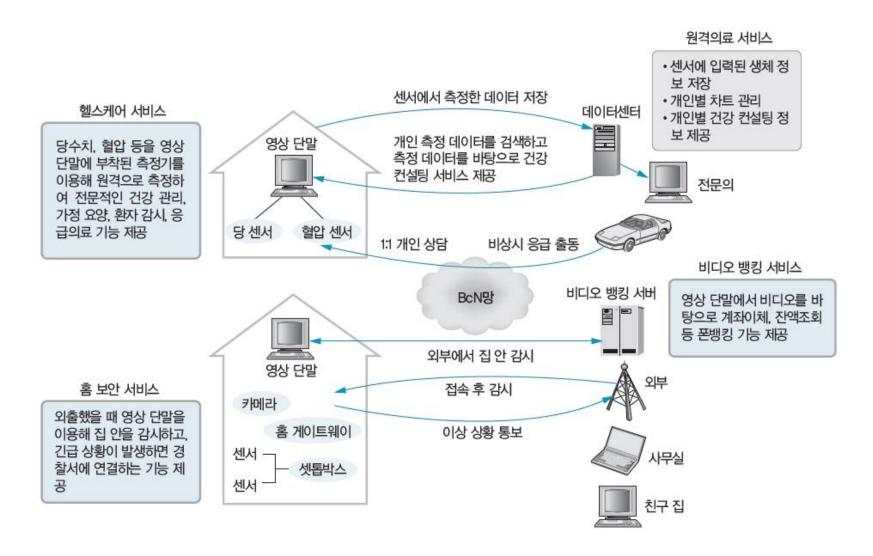

특징	설명
새로운 교환 방식	ATM 방식
새로운 망 접속 방식	SDH와 SONET
전송매체	광섬유 케이블
멀티미디어 서비스 지원	광대역 멀티미디어 서비스
고속 데이터 통신 서비스 지원	CATV, VOD 등 영상 서비스 지원
전송 모드 지원	다중 교환, 전송 형태 지원

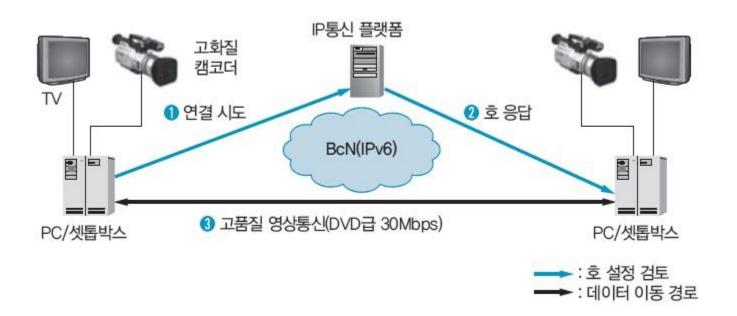
B-ISDN의 서비스

형태	구분	응용 예
	대화형	영상회의, 영상전화 등
양방향(대칭형)	메시지형	영상우편, 멀티미디어 메일 서비스 등
	검색형	전자사전, 여행 안내 검색, 비디오텍스용 서비스 등
다번 1억시기 기계	이용자 제어 불능	HDTV, CATV 등
단방향(비대칭형)	이용자 제어 가능	주식 안내나 일기예보의 그래픽 그래프 등

광대역 통합 네트워크BcN, Broadband convergence Network

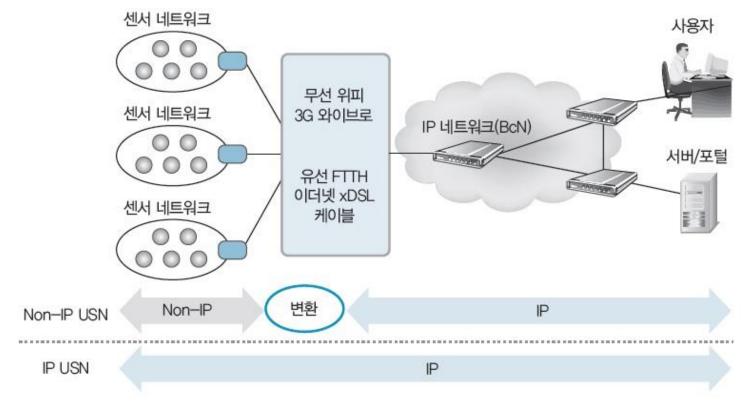

- 통신, 방송, 인터넷 같은 각종 서비 스를 통합하며, 다양한 응용 서비 스를 쉽게 개발할 수 있는 개방형 플랫폼(Open API)에 기반을 둔 차 세대 통합 네트워크
- 가입자가 단말기 하나로 언제 어디서나 초고속 인터넷과 방송을 즐길 수 있음
- BcN은 국내에서 주로 사용, 미국에 서는 차세대 네트워크(NGN)로 사 용


BcN의 계층 구조


BcN의 특성

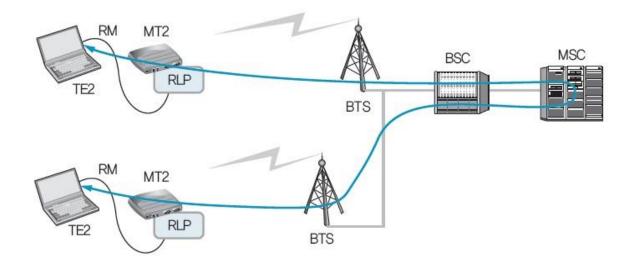
BcN에서 응용 가능한 서비스

BcN에서 영상회의 서비스



USN

- 센서 네트워크를 이용해 유비쿼터스 환경을 구현하는 것이 목적인 기술
- 원래 WSN에서 시작했으나 포괄적 의미로 한국에서 USN이라는 명칭을 제안
- RFID, WSN 등의 내용을 포함한 모든 사물에 적용되는 임베디드 무선 네 트워크 기술
- USN 관련 소프트웨어 플랫폼 : TinyOS, Nano Qplus, Contiki, LiteOS 등
- USN 관련 표준 : IETF의 6LowPAN, ROLL, 지그비, Wireless HART, ISA 등
- 앞으로 IPv6를 접목한 USN 기술이 많이 확산될 것


IP-USNInternet Protocol-Ubiquitous Sensor Network

- 공공 안전을 지원하는 무선 메시 네트워크에 기반을 둔 기술의 일종
- 저전력·저비용·저대역의 특징을 지닌 센서 노드가 주변 노드와 무선 네트워크를 구성한 것

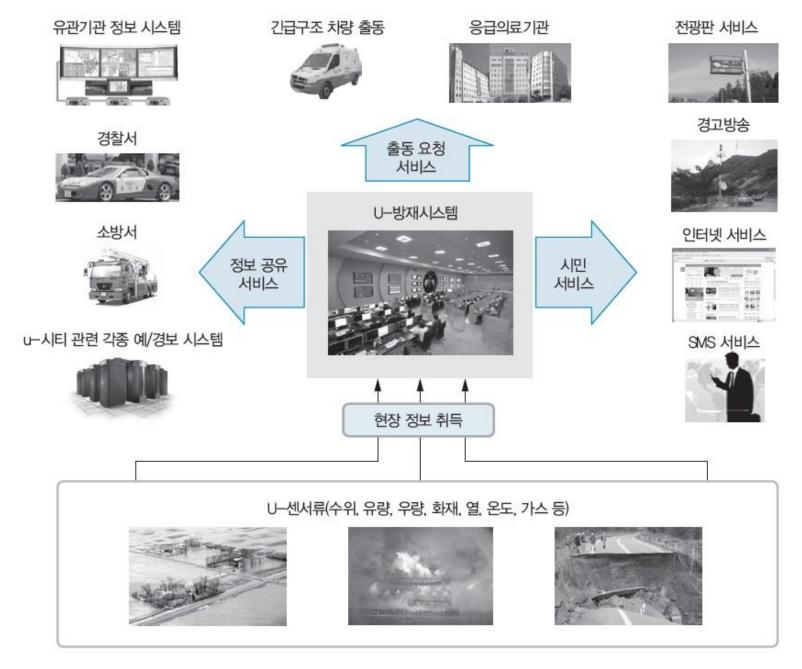
센서 노드와 게이트웨이, 서버 간의 데이터 통신

- 센서 노드: 재난 정보와 안전 관련 데이터를 아날로그에서 디지털로 변환 수집한 데이터를 게이트웨이로 전송한다 (IEEE802.15.4 6LoWPAN)
- 게이트웨이 : 무선 메시 네트워크를 이용해 안전센터 서버로 전송, 무선 구간은 IPSec ESP를 사용해 보안을 유지

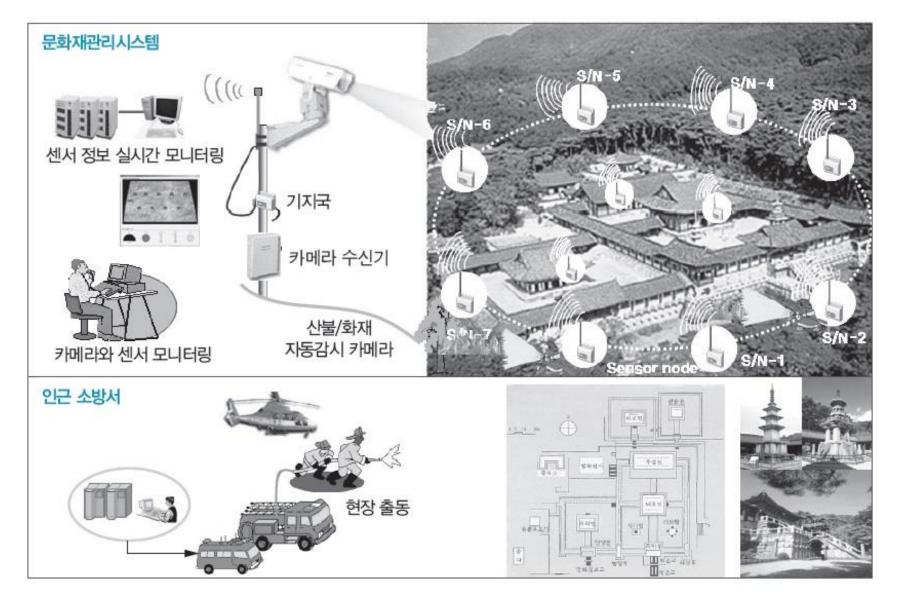
• TE: Terminal Equipment

MT : Mobile Terminal

· RM: MT-to-TE Serial Data Link


· RLP: Radio Link Protocol

· BTS: Base station Transceiver System


· BSC: Base Station Controller

· MSC: Mobile Message Switching Center

U-재난과 안전 서비스, 유관기 관의 연계

문화재관리시스템의 안전 서비스

무선 메시 네트워크(Wireless Mesh Network)

- 기존 무선 LAN의 한계를 극복하려고 등장
- IEEE802.15의 TG5에서 무선 메시 네트워크 표준화를 다룸
- 유선망의 메시 네트워크 형태를 무선망으로 가져와 망의 신뢰도를 높이고 적은 출력으로도 망을 확장할 수 있게 함(망의 확장성, 신뢰성, 이동성우수)