Relational Algebra select, project, join, set operators, renaming, notation

Suan Lee

• Query (expression) on set of relations produces relation as a result

• Query (expression) on set of relations produces relation as a result

Examples: simple college admissions database College(cName, state, enrollment) Student(sID, sName, GPA, sizeHS) Apply(sID, cName, major, decision) Examples: simple college admissions database College(cName, state, enrollment) Student(sID, sName, GPA, sizeHS) Apply(sID, cName, major, decision)

Coll	ege

cName	state	enr

sID	sName	GPA	HS

Simplest query: relation name

Use operators to filter, slice, combine

<u>College</u>

cName	state	enr

<u>Student</u>

sID	sName	GPA	HS

ApplysIDcNamemajordec..

Select operator: picks certain rows *Students with GPA>3.7*

Students with GPA>3.7 and HS<1000

Applications to Stanford CS major

<u>College</u>			
cName	state	enr	

Students with GPA>3.7 $\sigma_{\rm GPA>3.7}$ Student Students with GPA>3.7 and HS<1000

Applications to Stanford CS major

<u>College</u>			
cName	state	enr	

Students with GPA>3.7 $\sigma_{GPA>3.7}$ Student Students with GPA>3.7 and HS<1000 $\sigma_{GPA>3.7 \land HS<1000}$ Student Applications to Stanford CS major

<u>College</u>			
cName	state	enr	

StudentsIDsNameGPAHSIIIIIIIIIIIIIIIIIIII

 $\begin{array}{l} \textit{Students with GPA>3.7} \\ \sigma_{GPA>3.7} \, \text{Student} \\ \textit{Students with GPA>3.7 and HS<1000} \\ \sigma_{GPA>3.7 \, \land \, \text{HS}<1000} \, \text{Student} \\ \textit{Applications to Stanford CS major} \\ \sigma_{cName='Stanford' \, \land \, major='cs'} \, \text{Apply} \end{array}$

<u>College</u>		
cName	state	enr

<u>Student</u>

sID	sName	GPA	HS

ApplysIDcNamemajordec..

 $\begin{array}{l} \textit{Students with GPA>3.7} \\ \sigma_{GPA>3.7} \, \textit{Student} \\ \textit{Students with GPA>3.7 and HS<1000} \\ \sigma_{GPA>3.7 \, \land \, HS<1000} \, \textit{Student} \\ \textit{Applications to Stanford CS major} \\ \sigma_{cName='Stanford' \, \land \, major='cs'} \, \textit{Apply} \end{array}$

<u>College</u>			
cName	state	enr	

sID	sName	GPA	HS

Project operator: picks certain columns *ID and decision of all applications*

<u>College</u>

cName	state	enr

<u>Student</u>

sID	sName	GPA	HS

ApplysIDcNamemajordec..

Project operator: picks certain columns *ID and decision of all applications*

 $\Pi_{\rm sID, \ dec} Apply$

<u>College</u>			
cName	state	enr	

sID	sName	GPA	HS

Project operator: picks certain columns

ID and decision of all applications

Π_{sID, dec}Apply Π_{A1, A2, ..., An}

College

	_	
cName	state	enr

sID	sName	GPA	HS

To pick both rows and columns...

ID and name of students with GPA>3.7

<u> </u>			
cName	state	enr	

sID	sName	GPA	HS

To pick both rows and columns... *ID and name of students with GPA>3.7* $\Pi_{sID, sName}(\sigma_{GPA>3.7}Student)$

cName	state	enr		

sID	sName	GPA	HS

To pick both rows and columns...

ID and name of students with GPA>3.7

 $\Pi_{\text{sID, sName}}(\sigma_{\text{GPA>3.7}}\text{Student})$

 $\sigma_{cond}(Expr)$ $\Pi_{A1, A2, \dots An}(Expr)$

<u>College</u>			
cName	state	enr	

sID	sName	GPA	HS

Duplicates

List of application majors and decisions

<u>College</u>

cName	state	enr

<u>Student</u>

sID	sName	GPA	HS

ApplysIDcNamemajordec..

Duplicates

List of application majors and decisions $\Pi_{major, dec}$ Apply

_			
cName	state	enr	

sID	sName	GPA	HS

Duplicates

List of application majors and decisions $\Pi_{major, dec}$ Apply

SQL: multisets, bags Relational Algebra: sets

Colle	ege

cName	state	enr

sID	sName	GPA	HS

Cross-product: combine two relations (a.k.a. **Cartesian product**)

<u>College</u>

cName	state	enr

<u>Student</u>

sID	sName	GPA	HS

ApplysIDcNamemajordec..

(a.k.a. Cartesian product)

Student × *Apply*

cName	state	enr	

sID	sName	GPA	HS

(a.k.a. Cartesian product)

Student × Apply

Student			<u>Apply</u>					
sID	sName	GPA	HS		sID	cName	major	dec
				×				
				•				

(a.k.a. Cartesian product)

Student × *Apply*

(a.k.a. Cartesian product)

Student × *Apply*

(a.k.a. Cartesian product)

Names and GPAs of students with HS>1000 who applied to CS and were rejected

<u>College</u>			
cName	state	enr	

(a.k.a. Cartesian product)

Names and GPAs of students with HS>1000 who applied to CS and were rejected

(Student×Apply)

<u>College</u>			
cName	state	enr	

(a.k.a. Cartesian product)

Names and GPAs of students with HS>1000 who applied to CS and were rejected

 $\sigma_{Student.sID=Apply.sID}$ (Student×Apply)

<u>College</u>			
cName	state	enr	

(a.k.a. Cartesian product)

Names and GPAs of students with HS>1000 who applied to CS and were rejected

 $\sigma_{Student.sID=Apply.sID \land HS>1000 \land major='cs'} (Student \times Apply)$

<u>College</u>			
cName	state	enr	

<u>Student</u>				
sID	sName	GPA	HS	

(a.k.a. Cartesian product)

Names and GPAs of students with HS>1000 who applied to CS and were rejected

 $\sigma_{Student.sID=Apply.sID \land HS>1000 \land major='cs' \land dec='R'} (Student \times Apply)$

<u>College</u>			
cName	state	enr	

<u>Student</u>			
sID	sName	GPA	HS

(a.k.a. Cartesian product)

Names and GPAs of students with HS>1000 who applied to CS and were rejected

 $\Pi_{sName, GPA} \left(\sigma_{Student.sID=Apply.sID \land HS>1000 \land major='cs' \land dec='R'} \left(Student \times Apply \right) \right)$

<u>College</u>			
cName	state	enr	

Student			
sID	sName	GPA	HS

<u>Apply</u>				
sID	cName	major	dec	

- Enforce equality on all attributes with same name
- Eliminate one copy of duplicate attributes

<u>College</u>

cName	state	enr

<u>Student</u>

sID	sName	GPA	HS

ApplysIDcNamemajordec..

- Enforce equality on all attributes with same name
- Eliminate one copy of duplicate attributes

<u>College</u>

cName	state	enr

sID	sName	GPA	HS

- Enforce equality on all attributes with same name
- Eliminate one copy of duplicate attributes

College				
cName	state	enr		

StudentsIDsNameGPAHSIIIIIIIIIIIIIIIIIIII

- Enforce equality on all attributes with same name
- Eliminate one copy of duplicate attributes

- Enforce equality on all attributes with same name
- Eliminate one copy of duplicate attributes

 \bowtie

Names and GPAs of students with HS>1000 who applied to CS and were rejected

<u>College</u>

cName	state	enr

<u>Student</u>

sID	sName	GPA	HS

ApplysIDcNamemajordec..

Names and GPAs of students with HS>1000 who applied to CS and were rejected

(Student⋈Apply)

cName	state	enr	

sID	sName	GPA	HS

Names and GPAs of students with HS>1000 who applied to CS and were rejected

 $\Pi_{sName, GPA}(\sigma_{HS>1000 \land major='cs' \land dec='R'} (Student \bowtie Apply)$

sID	sName	GPA	HS

Names and GPAs of students with HS>1000 who applied to CS at college with enr>20,000 and were rejected

 $\Pi_{\text{sName, GPA}}(\sigma_{\text{HS>1000} \land \text{major='cs'} \land \text{dec='R'}}(\text{Student} \bowtie \text{Apply})$

Student

sID	sName	GPA	HS

Names and GPAs of students with HS>1000 who applied to CS at college with enr>20,000 and were rejected

 $\Pi_{sName, GPA}(\sigma_{HS>1000 \land major='cs' \land dec='R' \land enr>20000}(Student \bowtie (Apply \bowtie College))$

StudentsIDsNameGPAHSIIIIIIIIIIIIIIIIIIII

<u>College</u>

cName	state	enr

<u>Student</u>

sID	sName	GPA	HS

ApplysIDcNamemajordec..

Exp1 \bowtie Exp2 \equiv $\Pi_{\text{schema(E1), schema(E2)}}(...)$ $\sigma_{\text{E1A1=E2A1} \land \text{E1A2=E2A2} \land ...}$ (Exp1 × Exp2)

College			
cName	state	enr	

sID	sName	GPA	HS

Theta Join

<u>College</u>

cName	state	enr

<u>Student</u>

sID	sName	GPA	HS

ApplysIDcNamemajordec..

Theta Join

 $Exp1 \bowtie Exp2 \equiv \sigma_{\Theta}(Exp1 \bowtie Exp2)$

<u>College</u>

cName	state	enr

<u>Student</u>

sID	sName	GPA	HS

ApplysIDcNamemajordec..

Theta Join

 $Exp1 \bowtie Exp2 \equiv \sigma_{\Theta}(Exp1 \bowtie Exp2)$

- Basic operation implemented in DBMS
- Term "join" often means theta join

<u>College</u>			
cName	state	enr	

Query (expression) on set of relations produces relation as a result

- Simplest query: relation name
- Use operators to filter, slice, combine
- Operators so far: select, project, cross-product, natural join, theta join

Relational algebra query (expression) on set of relations produces relation as a result

College(cName, state, enrollment) Student(sID, sName, GPA, sizeHS) Apply(sID, cName, major, decision) Relational algebra query (expression) on set of relations produces relation as a result

College(cName, state, enrollment) Student(sID, sName, GPA, sizeHS) Apply(sID, cName, major, decision)

List of college and student names

<u>College</u>

cName	state	enr

<u>Student</u>

sID	sName	GPA	HS

ApplysIDcNamemajordec..

List of college and student names

Stanford Susan Cornell Mary John

...

<u>College</u>

cName	state	enr

sID	sName	GPA	HS

List of college and student names

Stanford	× M	$t_1 - t_2$
Susan		
Cornell		
Mary		
John		

<u>College</u>

cName	state	enr

...

sID	sName	GPA	HS

List of college and student names

Stanford	$\times \bowtie$	$t_1 - t_2$
Susan	t₁	
Cornell	t_2	
Mary	-2	
John		

...

<u>College</u>

cName	state	enr

Student

sID	sName	GPA	HS

List of college and student names

Stanford	$\times \bowtie$	$t_1 - t_2$
Susan	t1	
Cornell	t_2	
Mary	-2	
John	U	

...

<u>College</u>

cName	state	enr		

sID	sName	GPA	HS

List of college and student names

 $\Pi_{cName}College \cup \Pi_{sName}Student$

<u>College</u>

cName	state	enr

...

<u>S</u>	tu	<u>d</u>	e	n	t

sID	sName	GPA	HS

<u>Apply</u>			
sID	cName	major	dec

IDs of students who didn't apply anywhere

<u>College</u>

cName	state	enr

sID	sName	GPA	HS

IDs of students who didn't apply anywhere

 $\Pi_{\rm sID} Student$ - $\Pi_{\rm sID} Apply$

state	enr		
	state		

sID	sName	GPA	HS

IDs and names of students who didn't apply anywhere

 $\Pi_{\rm sID} Student$ - $\Pi_{\rm sID} Apply$

cName	state	enr

sID	sName	GPA	HS

IDs and names of students who didn't apply anywhere

Π_{sID, sName}Student - Π_{sID, ?}Apply

state	enr		
	state		

sID	sName	GPA	HS

IDs and names of students who didn't apply anywhere

 $\Pi_{\rm sID} Student$ - $\Pi_{\rm sID} Apply$

cName	state	enr

sID	sName	GPA	HS

IDs and names of students who didn't apply anywhere

(Π_{sID} Student - Π_{sID} Apply)

<u>conege</u>			
cName	state	enr	

sID	sName	GPA	HS

IDs and names of students who didn't apply anywhere

 $\Pi_{sID, sName}((\Pi_{sID}Student - \Pi_{sID}Apply) \bowtie Student)$

cName	state	enr	

sID	sName	GPA	HS

Intersection operator

Names that are both a college name and a student name

<u>College</u>

cName	state	enr

<u>Student</u>

sID	sName	GPA	HS

ApplysIDcNamemajordec..

Intersection operator

Names that are both a college name and a student name

 $\Pi_{cName}College \cap \Pi_{sName}Student$

cName	state	enr			

sID	sName	GPA	HS

$$E_1 \cap E_2 \equiv E_1 - (E_1 - E_2)$$

$$E_1 \cap E_2 \equiv E_1 - (E_1 - E_2)$$

$$E_1 \cap E_2 \equiv E_1 - (E_1 - E_2)$$

$$\mathbf{E}_1 \cap \mathbf{E}_2 \equiv \mathbf{E}_1 - (\mathbf{E}_1 - \mathbf{E}_2)$$

$$\mathbf{E}_1 \cap \mathbf{E}_2 \equiv \mathbf{E}_1 - (\mathbf{E}_1 - \mathbf{E}_2)$$

$$E_1 \cap E_2 \equiv E_1 \bowtie E_2$$

$$schema =$$

Rename operator

1.

2.

3.

<u>College</u>

cName	state	enr

<u>Student</u>

sID	sName	GPA	HS

ApplysIDcNamemajordec..
1. $\rho_{R(A_1, ..., A_n)}(E)$

3.

2.

<u>College</u>

cName	state	enr

sID	sName	GPA	HS

1.
$$\rho_{R(A_1, ..., A_n)}(E)$$

2.
$$\rho_{R}(E)$$

3.
$$\rho_{A_1, ..., A_n}(E)$$

<u>College</u>

cName	state	enr

sID	sName	GPA	HS

To unify schemas for set operators

List of college and student names

<u> </u>				
cName	state	enr		

Student

sID	sName	GPA	HS

To unify schemas for set operators List of college and student names

 $\Pi_{cName}College \cup \Pi_{sName}Student$

sID	sName	GPA	HS

To unify schemas for set operators

List of college and student names

 $\rho_{C(name)}(\Pi_{cName}College) \cup \rho_{C(name)}(\Pi_{sName}Student)$

HS

<u>App</u>	<u>Apply</u>			
sID	cName	major	dec	

For disambiguation in "self-joins" Pairs of colleges in same state

<u>College</u>

cName	state	enr

<u>Student</u>

sID	sName	GPA	HS

ApplysIDcNamemajordec..

Rename operator For disambiguation in "self-joins" *Pairs of colleges in same state*

Stanford Berkeley

Berkeley UCLA

<u>Student</u>

sID	sName	GPA	HS

Relational Algebra - Suan Lee

For disambiguation in "self-joins" Pairs of colleges in same state

College×College

sID	sName	GPA	HS

For disambiguation in "self-joins" Pairs of colleges in same state

 $\sigma_{\text{state=state}}$ (College×College)

sID	sName	GPA	HS

For disambiguation in "self-joins" Pairs of colleges in same state

<u>College</u>

cName	state	enr

<u>Student</u>

sID	sName	GPA	HS

ApplysIDcNamemajordec..

Rename operator For disambiguation in "self-joins" *Pairs of colleges in same state* $\rho_{c1(n1, s1, e1)}(College)$

cName	state	enr

sID	sName	GPA	HS

For disambiguation in "self-joins"

Pairs of colleges in same state

 $\rho_{c1(n1, s1, e1)}(College) \rho_{c2(n2, s2, e2)}(College)$

cName	state	enr

sID	sName	GPA	HS

For disambiguation in "self-joins"

Pairs of colleges in same state

 $(\rho_{c1(n1, s1, e1)}(College)) \times (\rho_{c2(n2, s2, e2)}(College))$

<u>College</u>			
cName	state	enr	

sID	sName	GPA	HS

For disambiguation in "self-joins"

Pairs of colleges in same state

 $\sigma_{s1=s2}((\rho_{c1(n1, s1, e1)}(College)) \times (\rho_{c2(n2, s2, e2)}(College)))$

<u>College</u>			
cName	state	enr	

sID	sName	GPA	HS

For disambiguation in "self-joins"

Pairs of colleges in same state

 $(\rho_{c1(n1, s1, e1)}(College)) \bowtie (\rho_{c2(n2, s2, e2)}(College))$

<u>Col</u>	lege	<u>)</u>
cNa	me	st

cName	state	enr		

Student

sID	sName	GPA	HS

For disambiguation in "self-joins"

Pairs of colleges in same state

 $(\rho_{c1(n1, s, e1)}(College)) \bowtie (\rho_{c2(n2, s, e2)}(College))$

Coll	ege

cName	state	enr

sID	sName	GPA	HS

For disambiguation in "self-joins" *Pairs of colleges in same state*

 $(\rho_{c1(n1, s, e1)}(College)) \bowtie (\rho_{c2(n2, s, e2)}(College))$

Stanford Berkeley Stanford Stanford Berkeley Berkeley

<u>College</u>			
cName	state	enr	

sID	sName	GPA	HS

For disambiguation in "self-joins" *Pairs of colleges in same state*

 $\sigma_{n1 \neq n2}(\rho_{c1(n1, s, e1)}(\text{College})) \bowtie (\rho_{c2(n2, s, e2)}(\text{College}))$

Stanford Berkeley Stanford Stanford Berkeley Berkeley

<u>College</u>			
cName	state	enr	

sID	sName	GPA	HS

For disambiguation in "self-joins"

Pairs of colleges in same state

Stanford Berkeley

 $\sigma_{n1 \neq n2}(\rho_{c1(n1, s, e1)}(\text{College})) \bowtie (\rho_{c2(n2, s, e2)}(\text{College}))$

sID	sName	GPA	HS

For disambiguation in "self-joins"

Pairs of colleges in same state

Stanford Berkeley Berkeley Stanford

 $\sigma_{n1 \neq n2}(\rho_{c1(n1, s, e1)}(\text{College})) \bowtie (\rho_{c2(n2, s, e2)}(\text{College}))$

sID	sName	GPA	HS

For disambiguation in "self-joins"

Pairs of colleges in same state

Berkeley

Stanford

 $\sigma_{n1 < n2}(\rho_{c1(n1, s, e1)}(College)) \bowtie (\rho_{c2(n2, s, e2)}(College))$

sID	sName	GPA	HS

Assignment statements – Pairs of colleges in same state

<u>College</u>

cName	state	enr

<u>Student</u>

sID	sName	GPA	HS

ApplysIDcNamemajordec..

Assignment statements – Pairs of colleges in same state

C1 := $\rho_{c1, s, e1}$ College C2 := $\rho_{c2, s, e2}$ College Cp := C1 \bowtie C2 Ans := $\sigma_{n1 < n2}$ CP

<u>College</u>			
cName	state	enr	

<u></u>			
sID	sName	GPA	HS

Expression tree – GPAs of students applying to CS in CA

<u>College</u>

cName	state	enr

<u>Student</u>

sID	sName	GPA	HS

ApplysIDcNamemajordec..

Core R

Relational Algebra - Suan Lee

Core R $\sigma_{c}(E)$

Core R $\sigma_c(E)$ $\Pi_{A1, \dots, An}(E)$

Core R $\sigma_c(E)$ $\Pi_{A1, \dots, An}(E)$ $E_1 \times E_2$

Core R $\sigma_c(E)$ $\Pi_{A1, \dots, An}(E)$ $E_1 \times E_2$ $E_1 \cup E_2$

Core R $\sigma_c(E)$ $\Pi_{A1, \dots, An}(E)$ $E_1 \times E_2$ $E_1 \cup E_2$ $E_1 - E_2$

Core R $\sigma_c(E)$ $\Pi_{A1, \dots, An}(E)$ $E_1 \times E_2$ $E_1 \cup E_2$ $E_1 - E_2$ $\rho_{R(A1, \dots, An)}(E)$

Abbreviations

Core R $\sigma_c(E)$ $\Pi_{A1, \dots, An}(E)$ $E_1 \times E_2$ $E_1 \cup E_2$ $E_1 - E_2$ $\rho_{R(A1, \dots, An)}(E)$ Abbreviations $E_1 \bowtie E_2$

Core R $\sigma_c(E)$ $\Pi_{A1, \dots, An}(E)$ $E_1 \times E_2$ $E_1 \cup E_2$ $E_1 - E_2$ $\rho_{R(A1, \dots, An)}(E)$ Abbreviations $E_1 \bowtie E_2$ $E_1 \bowtie_{\Theta} E_2$

Core R $\sigma_c(E)$ $\Pi_{A1, \dots, An}(E)$ $E_1 \times E_2$ $E_1 \cup E_2$ $E_1 - E_2$ $\rho_{R(A1, \dots, An)}(E)$

Abbreviations $E_1 \bowtie E_2$ $E_1 \bowtie_{\Theta} E_2$ $E_1 \cap E_2$

Core R $\sigma_c(E)$ $\Pi_{A1, \dots, An}(E)$ $E_1 \times E_2$ $E_1 \cup E_2$ $E_1 - E_2$ $\rho_{R(A1, \dots, An)}(E)$ Abbreviations $\begin{array}{c}
E_1 \Join E_2 \\
E_1 \Join_{\Theta} E_2 \\
E_1 \cap E_2
\end{array}$

Core R $\sigma_c(E)$ $\Pi_{A1, \dots, An}(E)$ $(E_1) \times (E_2)$ $E_1 \cup E_2$ $E_1 - E_2$ $\rho_{R(A1, \dots, An)}(E)$ Abbreviations $\begin{bmatrix}
E_1 \bowtie E_2 \\
E_1 \bowtie_{\Theta} E_2 \\
E_1 \cap E_2
\end{bmatrix}$

Core R $\sigma_c(E)$ $\Pi_{A1, \dots, An}(E)$ $(E_1) \times (E_2)$ $E_1 \cup E_2$ $E_1 - E_2$ $\rho_{R(A1, \dots, An)}(E)$ Abbreviations $\begin{array}{c}
E_1 \Join E_2 \\
E_1 \Join_{\Theta} E_2 \\
E_1 \cap E_2
\end{array}$