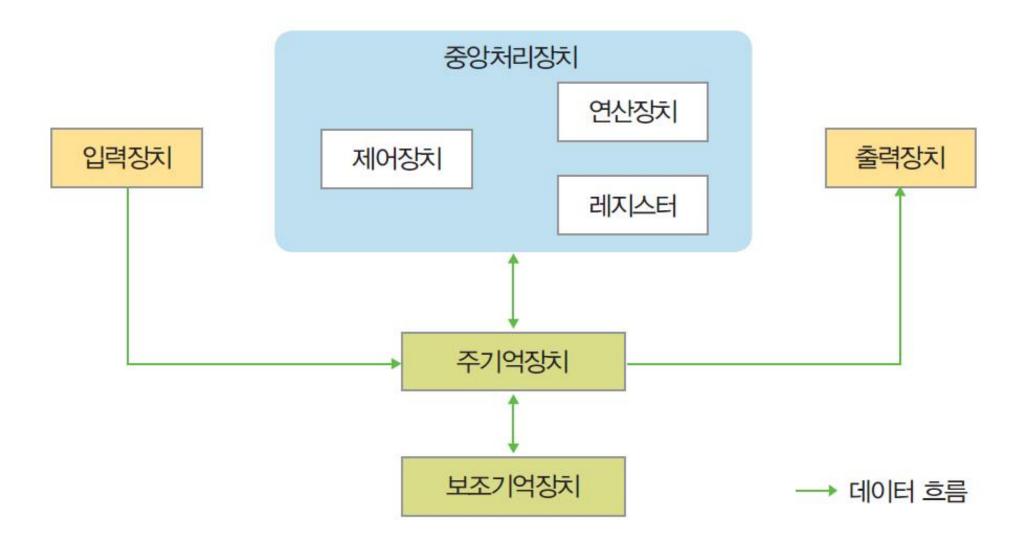


03 컴퓨터 구조

목차

- 1. 컴퓨터 시스템의 구성
- 2. 중앙처리장치
- 3. 기억장치
- 4. 입출력장치


컴퓨터 시스템의 구성

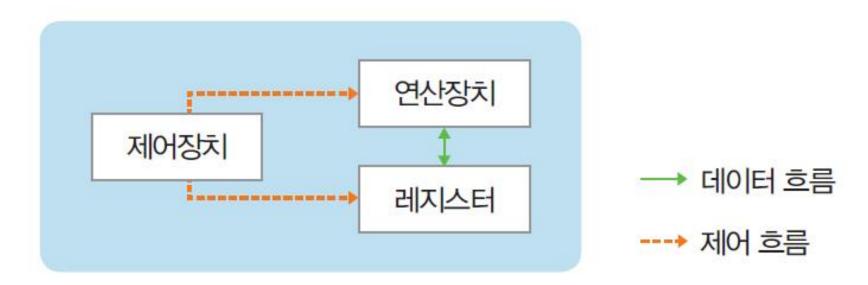
■ 하드웨어 : 컴퓨터를 구성하는 기계적 장치

■ 소프트웨어 : 하드웨어의 동작을 지시하고 제어하는 명령어의 집합

하드웨어의 구성

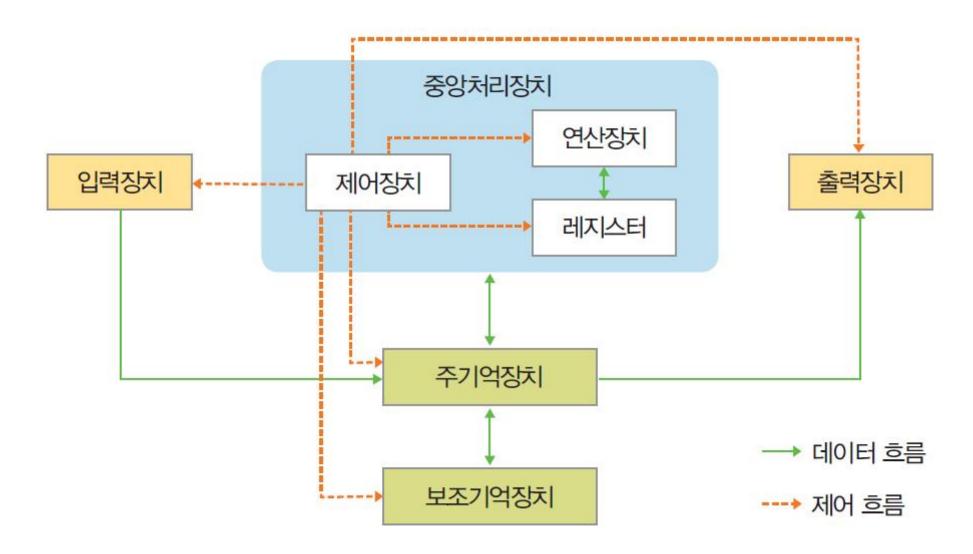
하드웨어의 구성

- 중앙처리장치
 - 주기억장치로부터 프로그램 명령어와 데이터를 읽어온 뒤 처리
 - 산술논리연산장치, 제어장치, 레지스터로 구성
- 기억장치
 - 프로그램과 데이터, 연산의 중간 결과 등을 저장
 - 주기억장치와 보조기억장치로 구분
 - 주기억장치는 프로그램과 데이터를 일시적으로 저장
 - 보조기억장치는 데이터를 영구적으로 보관
- 입출력장치
 - 입력장치는 각종 자료를 컴퓨터 내부로 입력하는 장치
 - 출력장치는 컴퓨터에서 처리한 결과를 외부로 표현하는 장치

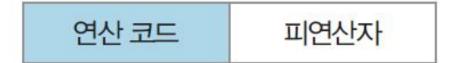

시스템 버스

- 데이터 버스 : 중앙처리장치와 기타 장치(기억장치, 입출력장치 등) 사이에서 데이터 를 전달하는 통로
- 주소 버스 : 중앙처리장치가 주기억장치나 입출력장치로 기억장치 주소를 전달하는 통로
- 제어 버스 : 중앙처리장치가 기억장치나 입출력장치에 제어 신호를 전달하는 통로

중앙처리장치의 구성


- 연산장치: 덧셈, 뺄셈, 곱셈, 나눗셈 등의 산술연산과 논리곱, 논리합, 부정 등의 논리연산을 수행
- 제어장치: 명령어를 순서대로 실행할 수 있도록 제어하는 장치
- 레지스터: 중앙처리장치의 속도와 비슷한 고속의 기억장치로 명령어 주소, 명령어 코드, 연산에 필요한 데이터, 연산 결과 등을 임시로 저장함

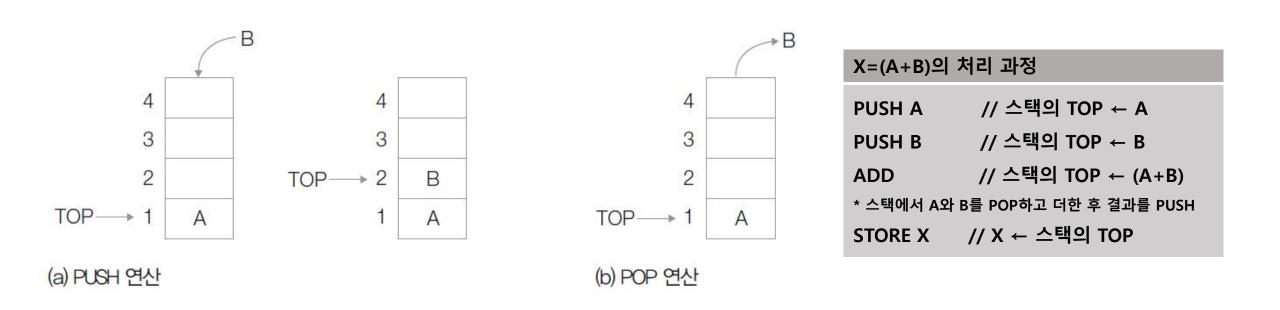
중앙처리장치의 구성


용도	명칭	71능	
주소 저장	메모리 주소 레지스터 (MAR, Memory Address Register)	읽기와 쓰기 연산을 수행할 주기억장치의 주소를 저장한다.	
	프로그램 카운터 (PC, Program Counter)	다음에 수행할 명령어의 주소를 저장한다.	
	스택 포인터(SP, Stack Pointer)	스택의 최상위 주소를 저장한다.	
	인덱스 레지스터(IX, IndeX register)	인덱스 주소 지정 방식에서 인덱스를 저장한다.	
명령어 저장	명령어 레지스터 (IR, Instruction Register)	현재 실행 중인 명령어를 저장한다.	
데이터 저장	메모리 버퍼 레지스터 (MBR, Memory Buffer Register)	주기억장치에서 읽어온 데이터나 주기억장치에 저장할 데이 터를 임시로 저장한다.	
	누산기(AC, ACcumulator)	연산 결과를 임시로 저장한다.	
CPU 상태 저장	프로그램 상태 레지스터 (PSR, Program Status Register)	CPU의 현재 상태 정보를 저장한다.	

중앙처리장치의 동작

명령어 형식

- 연산 코드 : 실행하는 연산의 종류에 따라 연산 기능, 제어 기능, 데이터 전달 기능, 입출력 기능으로 나뉨
- 피연산자: 주소, 숫자, 문자, 논리 데이터 등을 저장



피연산자 수에 따른 명령어 분류

0-주소 명령어	연산 코드			
1-주소 명령어	연산 코드	주소 1		
2-주소 명령어	연산 코드	주소 1	주소 2	
3-주소 명령어	연산 코드	주소 1	주소 2	주소 3

주소 필드 수에 따른 명령어 분류

■ 0-주소 명령어 : 연산 코드만 존재하며 스택 구조 컴퓨터에서 사용

주소 필드 수에 따른 명령어 분류

- 1-주소 명령어
 - 단일 누산기 구조 컴퓨터에서 사용
 - 누산기 레지스터를 이용하여 데이터 연산을 수행
 - 연산에는 주기억장치에서 읽힌 데이터와 누산기에 저장된 데이터가 사용
 - 연산결과는 다시 누 산기에 저장

```
X=(A+B)의 처리 과정

LOAD A  // AC ← A

ADD B  // AC ← AC + B

* AC에 저장된 A와 주기억장치에서 읽어온 B를 더한 후 결과를 AC에 저장

STORE X  // X ← AC
```

주소 필드 수에 따른 명령어 분류

■ 2-주소 명령어: 2개의 주소필드를 가지며 가장 일반적인 형태

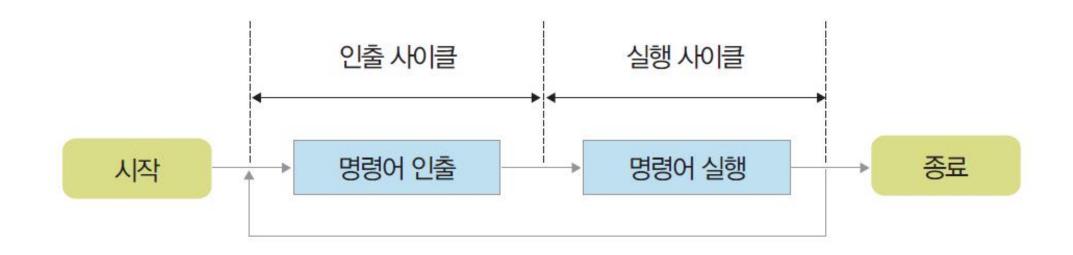
```
X=(A+B)의 처리 과정

MOV R1, A // R1 ← A

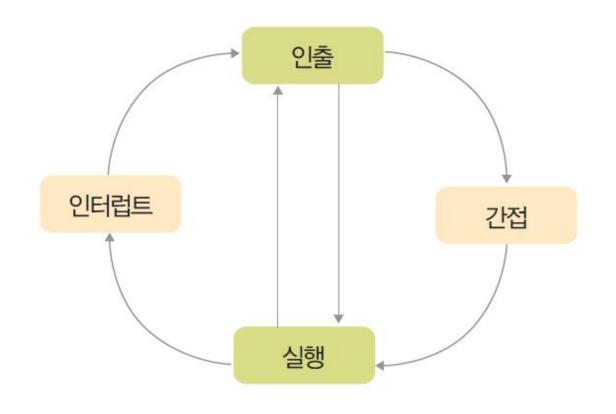
ADD R1, B // R1 ← R1 + B

* 레지스터 R1과 주기억장치에서 읽어온 B를 더한 후 결과를 R1에 저장

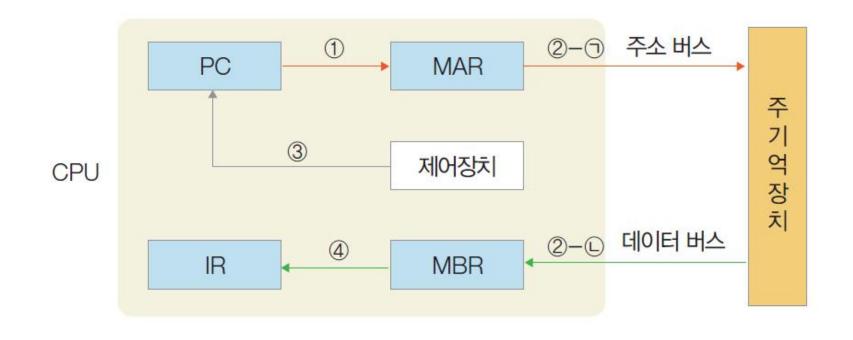
MOV X, R1 // X ← R1
```


■ 3-주소 명령어 : 3개의 주소 필드를 가지며, 주소 필드에 레지스 터 번호나 주기억장치의 주소를 지정

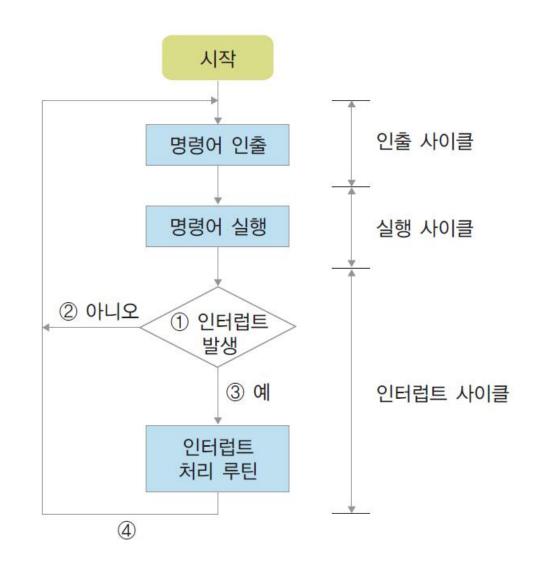
```
X=(A+B)의 처리 과정


ADD X, A, B // X ← A + B

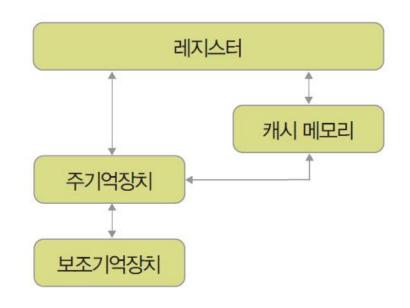
* 주기억장치에서 읽어온 A와 B를 더한 후 결과를 주기억장치 X에 저장
```


- 명령어 사이클
 - 중앙처리장치가 주기억장치로부터 한 번에 하나의 명령어를 인출하여 실행하는 데 필요한 일련의 활동

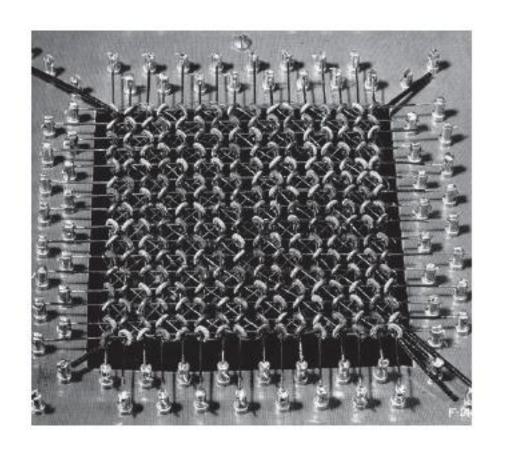
- 인출 사이클과 실행 사이클은 항상 수행
- 간접 사이클과 인터럽트 사이클은 주소 지정 방식과 인터럽트 요구에 따라 필요 할 때만 수행


- 인출 사이클
 - 주기억장치에서 명령어를 인출
 - 다음 명령어를 인출하기 위해 PC(프로그램 카운터)값을 증가시킴

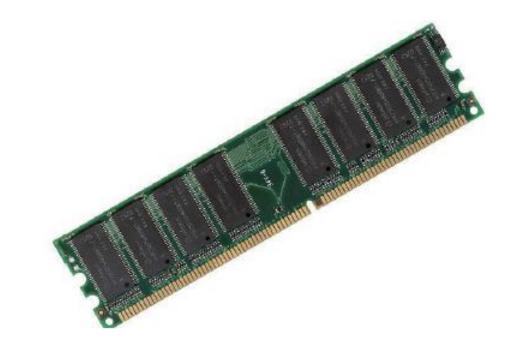
- 실행 사이클
 - 인출한 명령어를 해독하고 그 결과에 따라 제어 신호를 발생시켜 명령어를 실행
- 간접 사이클
 - 직접 주소 지정 방식과 간접 주소 지정 방식으로 나뉨


- 인터럽트 사이클
 - 인터럽트: 중앙처리장치가 프로그램을 수 행하는 동안 컴퓨터 시스템의 내부와 외부 에서 발생하는 예기치 못한 사건

기억장치의 계층 구조


■ 기억장치는 접근 속도, 기억 용량, 용도 등에 따라 다음의 네 가지 장치로 나뉨

■ 기억장치에서 데이터 흐름은 다음과 같음


주기억장치

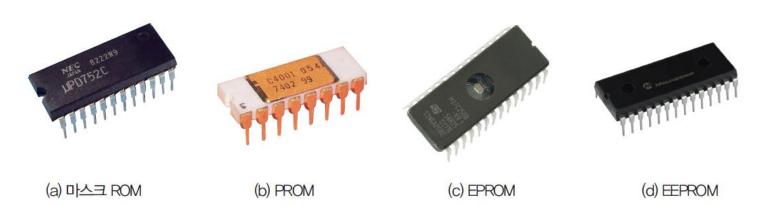
- 컴퓨터가 동작하는 동안 프로그램과 데 이터, 연산의 중간 결과 등을 저장
- 초기의 주기억장치는 자기 코어가 널리 사용
- 현재는 반도체 기억장치를 주로 사용

램

- 전원 공급이 중단되면 저장된 정보가 모두 지워지는 휘발성 메모리
- 저장 위치에 관계없이 일정한 시간 내에 읽거나 쓸 수 있는 임의 접근 기억장치

램

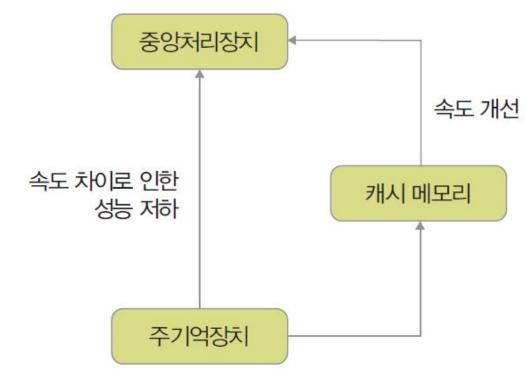
DRAM


- 트랜지스터 내의 축전지에 충전된 전하를 이용하여 정보를 저장
- 축전지의 전하는 시간이 지나면 방전되므로 주기적인 재충전이 필요
- 가격이 저렴하고 전력 소비가 적으며 동작 속도가 빠르고 집적도가 높음
- 대용량 메모리에 적합

SRAM

- 플립플롭 기억소자로 구성
- 전원이 공급되는 동안 정보가 계속 유지되므로 DRAM처럼 주기적인 재충전이 필요 없음
- DRAM에 비해 회로가 복잡, 전력 소모가 크며 고가
- 캐시 메모리에 주로 사용

롬


- 저장된 프로그램과 데이터를 읽기만 하는 기억장치
- 전원이 공급되지 않아도 저장된 정보를 영구적으로 보존할 수 있는 비휘발성 메모 리
- 프로그램이나 데이터를 저장하는 데 사용
- 정보의 기록 횟수와 저장 방식에 따라 마스크 ROM, PROM, EPROM, EEPROM으로 구분

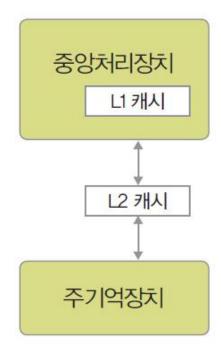
캐시 메모리

■ 중앙처리장치에서 주기억장치로의 긴 접근 시간으로 인해 성능이 저하되는 것을 방

지하기 위한 메모리

캐시 적중률(H)=캐시 적중 횟수/전체 기억장치 참조 횟수

유효 접근 시간=(H×캐시 적중 시 기억장치 접근 시간)+((1-H)×캐스 미스 시기억장치 접근 시간)

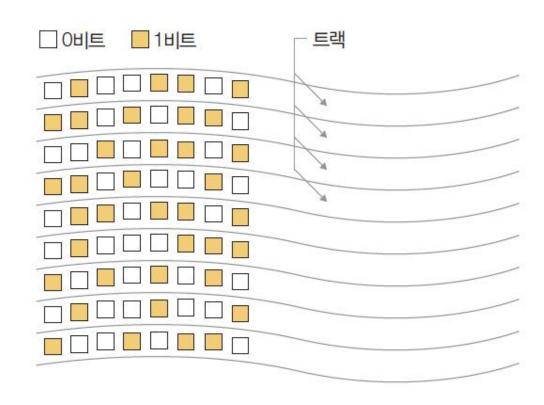

캐시 메모리

■ 문제

메모리 캐시 접근 시간이 20ns, 주기억장치 접근 시간이 100ns, 캐시 적중률이 95%일 때 기억장치의 유효 접근 시간은?

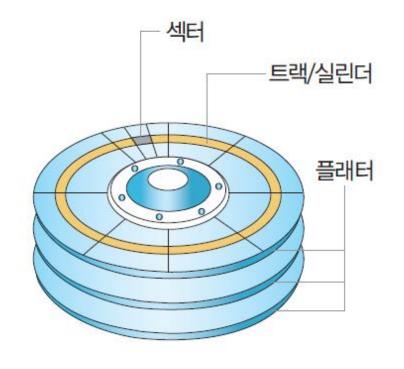
유효 접근 시간 = (0.95 × 20ns) + (0.05 × 120ns) = 25ns

■ 캐시 메모리 계층화


보조기억장치

- 프로그램이나 데이터를 영구적으로 저장하는 대용량의 저장장치
- 순차접근 기억장치와 직접접근 기억장치로 구분
 - 순차접근 기억장치: 정보를 순차적으로 읽거나 씀, 자기 테이프
 - 직접접근 기억장치:정보의 저장위치에 관계없이 임의의 주소에 직접 접근하여 정보를 읽고 씀, 자기 디스크와 광 디스크 등

자기 테이프



자기 디스크

- 자성체를 코팅한 원형의 플라스틱이나 금속판에 정보를 저장
- 순차접근과 직접접근이 모두 가능

광 디스크

- 레이저 광선을 이용하여 원반 표면에 문서, 음성, 화상 등의 정보를 디지털 부호로 변화하여 기록하고 재생하는 기억장치
- CD, DVD, LD, 블루레이 디스크 등

플래시 메모리

- 전력 소비가 적으며, 전원이 공급되지 않아도 저장된 정보가 보존되는 비휘발성 메모리
- 저장 용량이 큰 데이터 저장형과 처리 속도가 빠른 코드 저장용으로 구분

키보드

(a) 미니 블루투스 키보드

(b) 엑스박스 360 키보드

(c) 두 부분으로 나뉜 키보드

(a) 가상 키보드 VKEY

(b) 안드로이드 가상 키보드

(c) 아이패드 가상 키보드

마우스

(a) 무선 공중 마우스

(b) 오르비타 마우스

(c) 매직 마우스

조이스틱

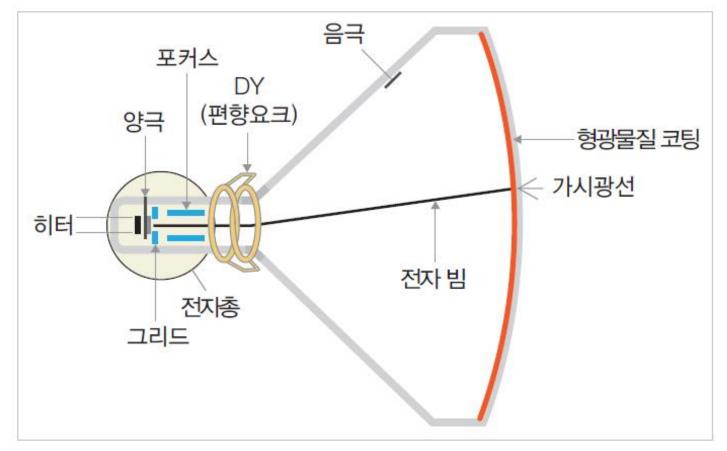
(a) 플레이스테이션용

(b) 슈팅 게임용

(c) 비행 시뮬레이션용

터치스크린

(b) 터치스크린 ATM



(c) 태블릿 PC

스캐너

CRT 모니터

(a) CRT 모니터의 원리

(b) 측면에서 본 CRT 모니터

LCD 모니터

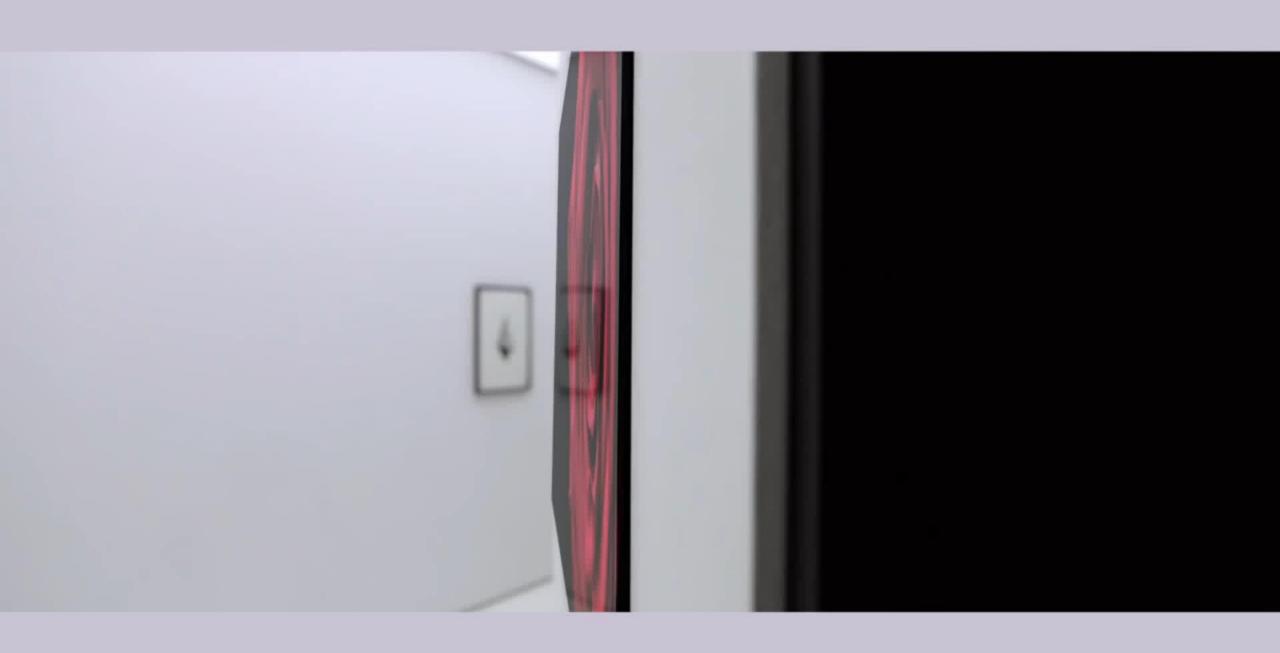
(a) LG전자의 LCD 모니터

(b) NEC의 울트라 와이드 모니터

PDP

OLED

- 전류가 흐르면 빛을 내는 현상을 이용하는 자체 발광형 유기 물질
- 휴대폰이나 카 오디오, 디지털 카메라와 같은 소형 기기의 디스플레이에 주로 사용
- 플렉서블 디스플레이를 만들 수도 있음


(a) 소니의 25인치 디스플레이

(b) 삼성의 4.3인치 디스플레이

(c) 필립스의 GoGear Spark PMP

- Computer Science - 03 컴퓨터 구조 42

충격식 프린터

(a) 도트 매트릭스 프린터

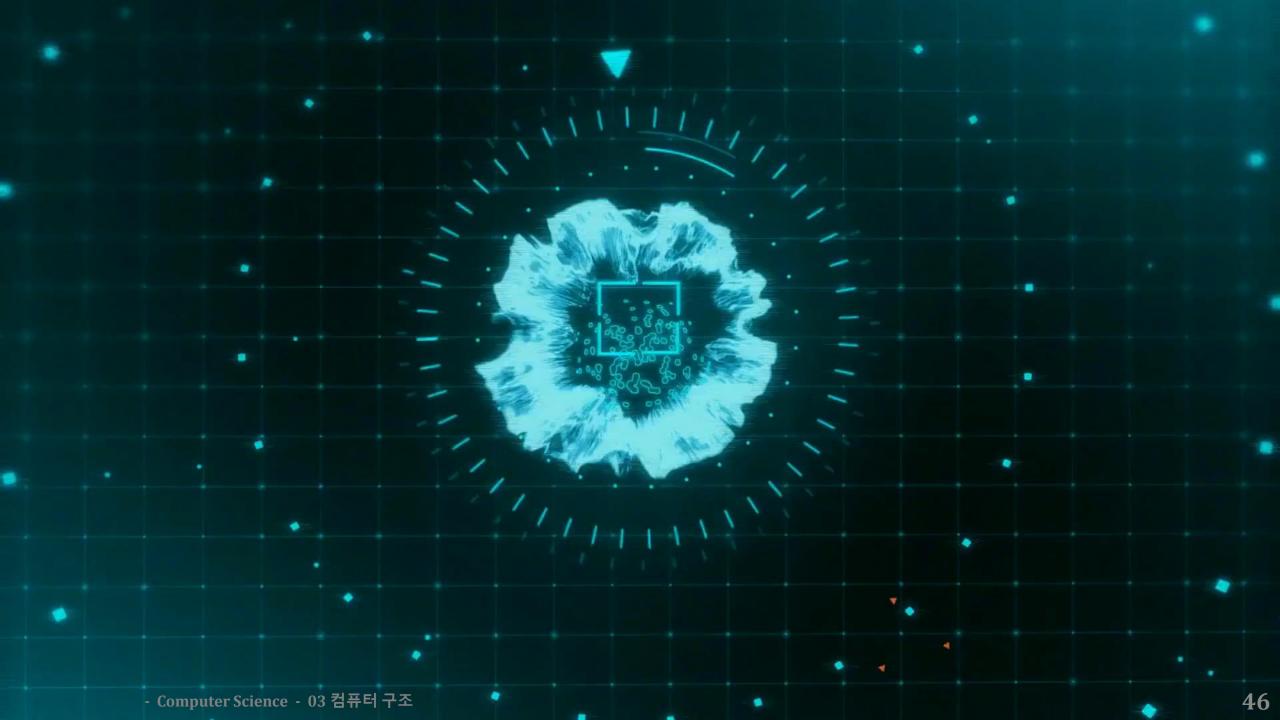
(b) 신용카드 영수증 발급기

비충격식 프린터

(a) 잉크젯 프린터

(b) 레이저 프린터

3차원 프린터


- CAD 등으로 빌딩, 지형, 선박, 비행기 등을 모델링한 3차원 설계도를 바탕으로 실물의 입체 모형을 만들 수 있음
- 공장이 없어도 제품을 만들 수 있는 21세기 첨단 기술의 총아로 손꼽힘

(a) 3차원 프린터

(b) 3차원 프린터로 만든 맞춤형 신발

플로터

(a) 캐논의 iPF655 플로터

(b) HP의 디자인 젯 Z6200 플로터

햅틱 인터페이스

(a) 햅틱 의료 시뮬레이션

(b) 햅틱 게임 컨트<u>롤</u>러

(c) 햅틱 스티어링 휠 스위치